A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improvement of UV stability of thermoplastic starch matrix by addition of selected lignin fraction - Photooxidative degradation. | LitMetric

Improvement of UV stability of thermoplastic starch matrix by addition of selected lignin fraction - Photooxidative degradation.

Int J Biol Macromol

Lignocellulosic Materials Laboratory, Science and Technology Center for Sustainability (CCTS), Federal University of São Carlos (UFSCar), João Leme dos Santos, km 110, 18052-780 Sorocaba, SP, Brazil.

Published: March 2023

AI Article Synopsis

  • This paper investigates how adding different fractions of kraft lignin to thermoplastic starch affects its performance and structure when exposed to UV light degradation.
  • The lignin was sourced from Eucalyptus urograndis and separated into soluble and insoluble fractions, which were then used to create films through casting and pressing techniques.
  • Results showed that films containing the soluble lignin fraction (TSOL) were the least affected by UV exposure, indicating that this fraction provides effective protection and stabilization for the thermoplastic starch matrix.

Article Abstract

This paper examines the additivation of thermoplastic starch (TPS) matrix by selected fractions of kraft lignin (KL) and correlates its structure-performance when exposed to photooxidative degradation. KL from Eucalyptus urograndis wood was refined by a sequential fractionation process in ethyl acetate (EtOAc). Films were prepared by mixing lignin fractions as additive in TPS matrix by casting and pressing. The lignin employed were KL, fraction of KL insoluble in EtOAc (INS) and fraction of KL soluble in EtOAc (SOL). The samples were exposed to accelerated aging with Ultraviolet-C light (UV-C) for 432 h. Structural changes were measured by FTIR (Fourier-Transform Infrared) spectra. Thermal properties, such as melting enthalpy, glass transition temperature and thermal decomposition, were evaluated by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetry). Morphology of the films was obtained by SEM (Scanning Electron Microscopy). Surface property of wettability was measured by contact angle. Mechanical properties were explored before and after exposure to UV-C light. It was observed that the least photodegraded films were those resulting from the addition of the lignin fraction with higher phenolic hydroxyl group content. According to structural and morphological observations, the soluble fraction (TSOL) presented the highest photoprotection and stabilizing effect as an UV-C light blocker additive on TPS matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123142DOI Listing

Publication Analysis

Top Keywords

tps matrix
12
thermoplastic starch
8
lignin fraction
8
photooxidative degradation
8
additive tps
8
uv-c light
8
lignin
5
fraction
5
improvement stability
4
stability thermoplastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!