Tetracycline removal from aqueous solution by electrooxidation using ruthenium-coated graphite anode.

Chemosphere

Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5019, Monastir, Tunisia.

Published: February 2023

This paper reports the electrochemical oxidation treatment of 80 mL of acidic aqueous solutions with 0.2 mM of the drug tetracycline in 25 mM NaSO using a lab-scale electrochemical cell. The performance of tetracycline removal with Ru-coated graphite by the chemical bath deposition (CBD) and raw graphite anode has been demonstrated. The effects of operating parameters were tested such as pH, applied current, supporting electrolyte concentration, and initial tetracycline concentration. The best tetracycline degradation was obtained with Ru-coated graphite anode due to its higher oxidation power, which allowed the complete degradation of refractory compounds. The modified surface structure of the Ru-coated graphite anode was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray (EDX). The EO process with Ru-coated graphite anode allowed 93.8% tetracycline abatement after 100 min of electrolysis at an applied current of 100 mA. In all cases, tetracycline decay obeyed pseudo-first-order kinetics. The tetracycline removal performance of graphite electrodes with nano coating on graphite has offered a performing alternative. A Comparative study revealed that electrolysis with Ru-coated graphite acted as a better electrode material than raw graphite for the catalytic reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.137758DOI Listing

Publication Analysis

Top Keywords

graphite anode
20
ru-coated graphite
20
tetracycline removal
12
graphite
10
tetracycline
8
raw graphite
8
applied current
8
anode
5
ru-coated
5
removal aqueous
4

Similar Publications

Graphene aerogels (GAs) with engineered architectures are a promising material for applications ranging from filtration to energy storage/conversion. However, current preparation approaches involve the combination of multiple intrinsically-different methodologies to achieve graphene-synthesis and architecture-engineering, complicating the entire procedure. Here, a novel approach to prepare GAs with engineered architectures based on the laser-upcycling of protein biowaste, hemoglobin, is introduced.

View Article and Find Full Text PDF

Unlocking Mesoscopic Disorder in Graphitic Carbon with Spectroelectrochemistry.

Angew Chem Int Ed Engl

December 2024

University of Chicago Division of the Physical Sciences, Chemistry, 929 E 57th St, Gordon Center for Integrative Science, 60637, Chicago, UNITED STATES OF AMERICA.

Intrinsic structural and oxidic defects activate graphitic carbon electrodes towards electrochemical reactions underpinning energy conversion and storage technologies. Yet, these defects can also disrupt the long-range and periodic arrangement of carbon atoms, and thus the characterization of graphitic carbon electrodes necessitate in-situ atomistic differentiation of graphitic regions from mesoscopic bulk disorder. Here, we leverage the combined techniques of in-situ attenuated total reflectance infrared spectroscopy and first-principles calculations to reveal that graphitic carbon electrodes exhibit electric-field dependent infrared activity that is sensitive to the bulk mesoscopic intrinsic disorder.

View Article and Find Full Text PDF

Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.

The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity.

View Article and Find Full Text PDF

In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface.

View Article and Find Full Text PDF

Impedimetric Sensor for SARS-CoV-2 Spike Protein Detection: Performance Assessment with an ACE2 Peptide-Mimic/Graphite Interface.

Biosensors (Basel)

December 2024

Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.

The COVID-19 pandemic has prompted the need for the development of new biosensors for SARS-CoV-2 detection. Particularly, systems with qualities such as sensitivity, fast detection, appropriate to large-scale analysis, and applicable in situ, avoiding using specific materials or personnel to undergo the test, are highly desirable. In this regard, developing an electrochemical biosensor based on peptides derived from the angiotensin-converting enzyme receptor 2 (ACE2) is a possible answer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!