Non-structural protein 1 (Nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major virulence factor and thus an attractive drug target. The last 33 amino acids of Nsp1 have been shown to bind within the mRNA entry tunnel of the 40S ribosomal subunit, shutting off host gene expression. Here, we report the solution-state structure of full-length Nsp1, which features an α/β fold formed by a six-stranded, capped β-barrel-like globular domain (N-terminal domain [NTD]), flanked by short N-terminal and long C-terminal flexible tails. The NTD has been found to be critical for 40S-mediated viral mRNA recognition and promotion of viral gene expression. We find that in free Nsp1, the NTD mRNA-binding surface is occluded by interactions with the acidic C-terminal tail, suggesting a mechanism of activity regulation based on the interplay between the folded NTD and the disordered C-terminal region. These results are relevant for drug-design efforts targeting Nsp1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817231 | PMC |
http://dx.doi.org/10.1016/j.str.2022.12.006 | DOI Listing |
Arterioscler Thromb Vasc Biol
January 2025
Cardiovascular Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden. (A.S., R.M.F., F.M.v.H.).
Background: Binding of ANGPTL (angiopoietin-like protein)-3 to ANGPTL8 generates a protein complex (ANGPTL3/8) that strongly inhibits LPL (lipoprotein lipase) activity, as compared with ANGPTL3 alone, suggesting that ANGPTL3/8 concentrations are critical for the regulation of circulation lipoprotein concentrations and subsequent increased coronary heart disease (CHD) risk. To test this hypothesis in humans, we evaluated the associations of circulating free ANGPTL3 and ANGPTL3/8 complex concentrations with lipoprotein concentrations and CHD risk in 2 prospective cohort studies.
Methods: Fasting blood samples were obtained in conjunction with the baseline evaluation of 9479 subjects from 2 population-based Swedish cohorts of middle-aged men and women.
Biochemistry
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India.
SARS-CoV-2 variant recurrence has emphasized the imperative prerequisite for effective antivirals. The main protease (Mpro) of SARS-CoV-2 is crucial for viral replication, making it one of the prime and promising antiviral targets. Mpro features several druggable sites, including active sites and allosteric sites near the dimerization interface, that regulate its catalytic activity.
View Article and Find Full Text PDFResearch (Wash D C)
November 2023
Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering and School of Pharmacy, Changzhou University, Changzhou, 213164, China.
Living tissues often have anisotropic and heterogeneous organizations, in which developmental processes are coordinated by cells and extracellular matrix modeling. Cells have the capability of modeling matrix in long distance; however, the biophysical mechanism is largely unknown. We investigated the dynamic remodeling of collagen I (COL) fibril matrix by cell contraction with designed patterns of cell clusters.
View Article and Find Full Text PDFBull World Health Organ
February 2025
International Institute of Health Management Research, Phase 2, Plot No 3, Sector 18A, Dwarka, New Delhi, 10075, India.
Problem: To address the long waiting times patients incur when visiting outpatient departments in India.
Approach: In 2022, the National Health Authority in India developed a paperless service, called Scan and Share, leveraging mobile technology and QR (quick-response) codes to streamline outpatient department appointments. Patients can use a mobile application (app) to scan QR codes at health facilities, generating tokens linked to registration counters.
Bull World Health Organ
February 2025
LSE Health, Department of Health Policy, London School of Economics and Political Science, Houghton Street, London, WC2A 2AE, London, England.
Objective: To map how social, commercial, political and digital determinants of health have changed or emerged during the recent digital transformation of society and to identify priority areas for policy action.
Methods: We systematically searched MEDLINE, Embase and Web of Science on 24 September 2023, to identify eligible reviews published in 2018 and later. To ensure we included the most recent literature, we supplemented our review with non-systematic searches in PubMed® and Google Scholar, along with records identified by subject matter experts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!