Land-based sources of groundwater pollution can be a critical threat to coral reefs, and a better understanding of "ridge-to-reef" water movement is required to advance management and coral survival in the Anthropocene. In this study a more complete understanding of the geological, atmospheric, and oceanic drivers behind coastal groundwater exchange on the Kalaupapa peninsula, on Moloka'i, Hawai'i, is obtained by analyzing high resolution geochemical and geophysical time-series data. In concert with multiyear water level analyses, a tidally and precipitation-driven groundwater connection between Kauhakō Crater lake and submarine groundwater discharge (SGD) fluxes are demonstrated. Results include an average discharge rate of 190 cm d and the detection of water-flow pathways past cesspools that likely contribute to higher nutrient loading near the SGD sites. This underlines the importance of managing anthropogenic nutrients that enter the shallow freshwater lens such as through cesspools and are consequently discharged via SGD onto coral reef habitats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2022.114509DOI Listing

Publication Analysis

Top Keywords

coastal groundwater
8
kauhakō crater
8
crater lake
8
moloka'i hawai'i
8
groundwater
5
physicochemical coastal
4
groundwater dynamics
4
dynamics kauhakō
4
lake kalaupapa
4
kalaupapa settlement
4

Similar Publications

Dissolved metal concentrations in coastal seawater and groundwater in Saipan, Commonwealth of the Northern Mariana Islands, USA.

Mar Pollut Bull

December 2024

Department of Environmental Science, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, United States of America; Department of Environmental Science and Studies, Washington College, Chestertown, MD 21620, United States of America.

Saipan, the largest and most populated island of the Commonwealth of the Northern Mariana Islands, has coastal areas with high submarine groundwater discharge (SGD) and heavy metal pollution of sediments. Here, we measured metal concentrations in coastal Saipan groundwater and surface water and explored spatial correlations with pollution sources. Concentrations of Cd, Pb, Cu, and Zn were highest in inland wells, with 3 wells exceeding USEPA guidelines for Cu or Pb.

View Article and Find Full Text PDF

Archaeological sites in deltaic regions face increasing environmental threats. This study provides the first assessment of seawater intrusion and land subsidence impacts on archaeological sites in the Nile Delta through hydrochemical investigations, InSAR techniques, and multi-criteria decision analysis of 33 sites. The results reveal that 80.

View Article and Find Full Text PDF

Groundwater is an essential freshwater source worldwide, but increasing pollution poses risks to its sustainability. This study applied a comprehensive approach to assess hydrogeochemical facies and groundwater quality in Odisha's large low-lying coastal regions. Analysis of 136 samples revealed that sodium (9.

View Article and Find Full Text PDF

Sea water intrusion (SWI) simulators are essential tools to assist the sustainable management of coastal aquifers. These simulators require the solution of coupled variable-density partial differential equations (PDEs), which reproduce the processes of groundwater flow and dissolved salt transport. The solution of these PDEs is typically addressed numerically with the use of density-dependent flow simulators, which are computationally intensive in most practical applications.

View Article and Find Full Text PDF

The Beijing-Tianjin-Hebei (Jing-Jin-Ji) Region is home to the most acute economic, resource, and environmental conflicts in the Bohai Sea region, and the rivers entering the sea carry abundant total nitrogen (TN) input into the Bohai Bay, which is the main land-based input causing eutrophication of the bay. The Haihe River Basin in the Jing-Jin-Ji Region was divided into 112 (2018-2019) and 187 (2020-2022) control units, and the spatial and temporal variations in TN concentration in the surface water of the Haihe River Basin in the Jing-Jin-Ji Region were systematically analyzed from 2018 to 2022 by combining the Euclidean distance analysis method and the K-means clustering analysis method. The results showed that the annual average concentration of TN in the region showed a trend of decreasing (2018-2020) and then increasing (2021-2022), in which the concentration of TN increased significantly from June 2021 to June 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!