Background: Heart failure (HF), caused by stress cardiomyopathy, is a major cause of mortality. Cardiac fibrosis is an essential structural remodeling associated with HF; therefore, preventing cardiac fibrosis is crucial to decelerating the progression of HF. Sodium houttuyfonate (SH), an extract of Houttuynia cordata, has a potent therapeutic effect on hypoxic cardiomyocytes in a myocardial infarction model.

Purpose: To investigate the preventative and therapeutic effects of SH during isoproterenol (ISO)-induced HF and explore the pharmacological mechanism of SH in alleviating HF.

Methods: We analyzed the overlapping target genes between SH and cardiac fibrosis or HF using a network pharmacology analytical method. We verified the suppressive effect of SH on ISO-induced proliferation and activation of cardiac fibroblasts by immunohistochemical staining and histological analysis in an isoproterenol-induced HF mouse model. Additionally, we investigated the effect of SH by evaluating fibrosis and cardiac remodeling markers. To further decipher the pharmacological mechanism of SH against cardiac fibrosis and HF, we performed a molecular docking analysis between SH and hub common target genes.

Results: There were 20 overlapping target genes between SH and cardiac fibrosis and 32 overlapping target genes between SH and HF. The 16 common target genes of SH against cardiac fibrosis and HF included MMP2 (matrix metalloproteinase 2), and p38. SH significantly inhibited the ISO- or TGF-β-induced expression of Col1α (collagen 1), α-SMA (smooth muscle actin), MMP2, TIMP2 (tissue inhibitor of metalloproteinase 2), TGF-β (transforming growth factor), and Smad2 phosphorylation. Moreover, both ISO- and TGF-β-induced p38 phosphorylation was inhibited. Molecular docking analysis showed that SH forms a stable complex with MMP2 and p38.

Conclusions: In addition to protecting cardiomyocytes, SH directly inhibits cardiac fibroblast activation and proliferation by binding to MMP2 and p38, subsequently delaying cardiac fibrosis and HF progression. Our prevention- and intervention-based approaches in this study showed that SH inhibited the development of stress cardiomyopathy-mediated cardiac fibrosis and HF when SH was administered before or after the initiation of cardiac stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2022.154590DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
36
target genes
16
cardiac
13
overlapping target
12
genes cardiac
12
fibrosis
10
sodium houttuyfonate
8
heart failure
8
binding mmp2
8
mmp2 p38
8

Similar Publications

In injured and diseased tissues, changes in molecular and cellular compositions, as well as tissue architecture, lead to alterations in both physiological and physical characteristics. Notably, the electrical properties of tissues, which can be characterized as bioelectrical impedance (bioimpedance), are closely linked to the health and pathological conditions of the tissues. This highlights the significant role of quantitatively characterizing these electrical properties in improving the accuracy and speed of diagnosis and prognosis.

View Article and Find Full Text PDF

Introduction: To determine the effects of atorvastatin on cardiac function and hemodynamics and to investigate its functional mechanism on cardiac fibrosis in acute myocardial infarction (AMI) rats.

Methods: Cardiac functions and hemodynamic changes were evaluated in each group on day 28. Quantitative reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry were performed to detect the expression of notch1, transforming growth factor-β (TGF-β), Smad2, Smad7, as well as myocardial fibrosis factors (i.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.

View Article and Find Full Text PDF

Arrhythmogenic Right Ventricular Cardiomyopathy in Monozygotic Twins-A Case Report.

J Clin Ultrasound

January 2025

Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is the classic phenotype of arrhythmogenic cardiomyopathy. ARVC in twins have been reported rarely. Herein, we report an unusual case of young monozygotic twins with early disease onset presenting different course of disease progression and clinical manifestations.

View Article and Find Full Text PDF

Background: There is a well-established relationship between liver conditions and cardiovascular diseases. However, uncertainty persists regarding the contribution of liver fibrosis to major stroke types including ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage at the population level.

Methods: In this large prospective cohort study, participants without previous stroke or coronary heart disease at baseline from the UK Biobank were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!