In July 2018, pepper plants (Capsicum annuum L.) with chlorotic leaves and fruits were observed in Kochi prefecture, Japan. High-throughput sequencing (HTS) identified the possible presence of an ophiovirus-like virus possessing three RNA segments in a chlorotic leaf. Using Sanger sequencing with primers designed based on the HTS results and a different source of RNA from the one used for HTS, the complete nucleotide sequences of three RNA segments encoding four proteins on their complementary strand were determined. The amino acid sequences of these four proteins showed similarity to those of the RNA-dependent RNA polymerase, RNA-silencing suppressor protein, movement protein, and coat protein, respectively, of ophioviruses, which are negative-sense single-stranded RNA viruses. However, the coat protein amino acid sequence of the virus found on pepper plants was no more than 61.9% identical to those of any known ophioviruses, which is lower than the species demarcation threshold of 85 %. Hence, we suggest that this virus, which we have named "pepper chlorosis associated virus" (PepCaV) should be considered a member of a new species in the genus Ophiovirus, for which we propose the name "Ophiovirus capsici". The results of phylogenetic analysis using coat protein amino acid sequences of PepCaV and other ophioviruses also supported this conclusion. PepCaV RNA was found to have conserved nucleotide sequences at both the 5' and 3' termini of the different RNA segments, and the conserved terminal nucleotide sequences were predicted to form a self-complementary double-stranded region, resulting in a panhandle structure in each of the genomic RNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-022-05691-5DOI Listing

Publication Analysis

Top Keywords

rna segments
12
nucleotide sequences
12
amino acid
12
coat protein
12
capsicum annuum
8
pepper plants
8
three rna
8
acid sequences
8
protein amino
8
rna
7

Similar Publications

Proliferative behaviours of CD90-expressing chondrocytes under the control of the TSC1-mTOR/PTHrP-nuclear localization segment pathway.

Osteoarthritis Cartilage

December 2024

Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Department of Oral anatomy and Physiology and TMD, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China. Electronic address:

Objective: Some cells in temporomandibular joint (TMJ) cartilage undergo proliferation in response to negative pressure, which can be induced in vivo by creating bilateral anterior elevation (BAE). TMJ cartilage harbours CD90-expressing cells, and CD90 expression increases under certain controlled conditions. The parathyroid hormone-related peptide (PTHrP) nuclear localization segment (NLS) promotes chondrocyte proliferation, and mammalian target of rapamycin (mTOR) signalling plays a regulatory role in promoting PTHrP transcription.

View Article and Find Full Text PDF

Mettl3-Mediated m6A Modification is Essential for Visual Function and Retinal Photoreceptor Survival.

Invest Ophthalmol Vis Sci

December 2024

The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.

View Article and Find Full Text PDF

Male-killing is a microbe-induced reproductive manipulation in invertebrates whereby male hosts are eliminated during development. In the tea tortrix moth Homona magnanima, Osugoroshi viruses 1‒3 (OGVs), belonging to Partitiviridae induce male-killing. The infection patterns of OGVs are diverse; however, how the influence of these patterns of host phenotypes remains largely unknown.

View Article and Find Full Text PDF

Background And Aims: The enteric nervous system (ENS), comprised of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation, yet while neuronal aspects have been extensively studied, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!