A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interaction between biochar-dissolved organic matter and chlorophenols during biochar adsorption. | LitMetric

Interaction between biochar-dissolved organic matter and chlorophenols during biochar adsorption.

Environ Sci Pollut Res Int

Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.

Published: March 2023

Biochar (BC) has been widely applied in the remediation of chlorophenols (CPs) from contaminated sites in which the role and mechanisms of BC dissolved organic matter (BDOM), as a crucial component of BC, with CPs are largely unknown and thus need to be investigated. In this study, DOM was derived from peanut hulls (PDOM) and corn stalks (CDOM) as BC sources, and the interactions between PDOM/CDOM and 2,4,6-trichlorophenol (TCP) were analysed using excitation-emission matrix spectroscopy (EEM) in combination with multiple models. EEM combined with fluorescence region integration (EEM-FRI) indicated that humic-like materials were the major materials of both PDOM and CDOM (percentage fluorescence response R > 60%), and CDOM contained more protein- and fulvic-like materials than PDOM. Based on EEM in combination with parallel factor analysis (EEM-PARAFAC), 4 components were obtained, and the percentage decrease in maximum fluorescence intensities (F) showed that the main components interacting with TCP in PDOM/CDOM were protein- and fulvic-like components (> 25%). Moreover, the modified Stern-Volmer model was used to calculate the stability constants (Log K) of PDOM/CDOM and TCP for the first time, and the mechanism of static quenching was dominant for interacting with TCP in PDOM (Log K: 4.36-4.65) and CDOM (Log K: 3.53-4.73). Furthermore, the sequential TCP binding of fluorescent components in BDOM generally followed the order of protein-like → short-wavelength fulvic-like → long-wavelength fulvic-like → humic-like components. These findings will provide a basis for screening biochar as a functional material for CP remediation applications and for understanding the environmental chemical behaviour of leached DOM during biochar application.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-25083-1DOI Listing

Publication Analysis

Top Keywords

organic matter
8
eem combination
8
materials pdom
8
protein- fulvic-like
8
interacting tcp
8
tcp
5
components
5
interaction biochar-dissolved
4
biochar-dissolved organic
4
matter chlorophenols
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!