Evaluation of Chinese populational exposure to environmental electromagnetic field based on stochastic dosimetry and parametric human modelling.

Environ Sci Pollut Res Int

China Academy of Information and Communications Technology, No. 52, Huayuan Bei Road, Beijing, 100191, China.

Published: March 2023

This study aimed to estimate the distribution of the whole-body averaged specific absorption rate (WBSAR) using several measurable physique parameters for Chinese adult population exposed to environmental electromagnetic fields (EMFs) of current wireless communication frequencies, and to discuss the effects of these physique parameters in the frequency-dependent dosimetric results. The physique distribution of Chinese adults was obtained from the National Physical Fitness and Health Database comprising 81,490 adult samples. The number of physique parameters used to construct the surrogate model was reduced to three via mutual information analysis. A stochastic method with 40 deterministic simulations was used to generate frequency-dependent and gender-specific surrogate models for WBSAR via polynomial chaos expansion. In the simulations, we constructed anatomically correct models conforming to the targeted physique parameters via deformable human modelling technique, which was based on deep learning from the image database including 767 Chinese adults. Thereafter, we analysed the sensitivity of the physique parameters to WBSAR by covariance-based Sobol decomposition. The results indicated that the generated models were consistent with the targeted physique parameters. The estimated dosimetric results were validated using finite-difference time-domain simulations (the error was < 6% across all the investigated frequencies for WBSAR). The novelty of the study included that it demonstrated the feasibility of estimating the individual WBSAR using a limited number of physique parameters with the aid of surrogate modelling. In addition, the population-based distribution of the WBSAR in Chinese adults was firstly presented in the manuscript. The results also indicated that the different combinations of physique parameter, dependent on genders and frequencies, significantly influenced the WBSAR, although the general conservativeness of the guidelines of the International Commission on Non-Ionizing Radiation and Protection can be confirmed in the surveyed population.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-25153-yDOI Listing

Publication Analysis

Top Keywords

physique parameters
24
environmental electromagnetic
8
human modelling
8
chinese adults
8
targeted physique
8
physique
7
parameters
6
evaluation chinese
4
chinese populational
4
populational exposure
4

Similar Publications

pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values.

View Article and Find Full Text PDF

Slower swimming promotes chemotactic encounters between bacteria and small phytoplankton.

Proc Natl Acad Sci U S A

January 2025

Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland.

Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells by reducing their search times, provided that bacteria detect noisy chemical gradients around phytoplankton. Gradient detection depends on bacterial phenotypes and phytoplankton size: large phytoplankton produce spatially extended but shallow gradients, whereas small phytoplankton produce steeper but spatially more confined gradients. To date, it has remained unclear how phytoplankton size and bacterial swimming speed affect bacteria's gradient detection ability and search times for phytoplankton.

View Article and Find Full Text PDF

Perfluorooctanesulfonic acid (PFOS) is one of the most investigated Per- and polyfluoroalkyl substances (PFAS) for being the strongest compound to eliminate and having adverse health concerns. In this work, we have conducted the sonochemical treatment of PFOS simulated water under high (500 kHz) and low (22 kHz) frequencies while monitoring the operational parameters via an integrated sonochemical system. The integrated advanced sonochemical system includes software to monitor treatment power, solution temperature and frequency while allowing distinctive control of the reaction conditions.

View Article and Find Full Text PDF

The Thermodynamics of the Van Der Waals Black Hole Within Kaniadakis Entropy.

Entropy (Basel)

November 2024

Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan.

In this work, we have studied the thermodynamic properties of the Van der Waals black hole in the framework of the relativistic Kaniadakis entropy. We have shown that the black hole properties, such as the mass and temperature, differ from those obtained by using the the Boltzmann-Gibbs approach. Moreover, the deformation κ-parameter changes the behavior of the Gibbs free energy via introduced thermodynamic instabilities, whereas the emission rate is influenced by κ only at low frequencies.

View Article and Find Full Text PDF

Resonant Conversion of Wave Dark Matter in the Ionosphere.

Phys Rev Lett

December 2024

Departement de Physique Theorique, Universite de Geneve, 24 quai Ernest Ansermet, 1211 Geneve 4, Switzerland.

Article Synopsis
  • Researchers are investigating how resonant dark matter can convert into low-frequency radio waves in Earth's ionosphere, particularly in the mass range of about 10^{-9} to 10^{-8} eV.
  • The typical methods for calculating this conversion are inadequate due to the nonrelativistic nature of dark matter, so a new approach involving a second-order boundary-value problem is applied.
  • Using a small dipole antenna to detect these radio waves could increase sensitivity to dark photon and axionlike particle dark matter, offering a new avenue for exploring uncharted regions of dark matter physics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!