Microorganisms living at many sites in the human body compose a complex and dynamic community. Accumulating evidence suggests a significant role for microorganisms in cancer, and therapies that incorporate bacteria have been tried in various types of cancer. We previously demonstrated that cupredoxin azurin secreted by the opportunistic pathogen Pseudomonas aeruginosa, enters human cancer cells and induces apoptotic death. However, the physiological interactions between P. aeruginosa and humans and their role in tumor homeostasis are largely unknown. Here, we show that P. aeruginosa upregulated azurin secretion in response to increasing numbers of and proximity to cancer cells. Conversely, cancer cells upregulated aldolase A secretion in response to increasing proximity to P. aeruginosa, which also correlated with enhanced P. aeruginosa adherence to cancer cells. Additionally, we show that cancer patients had detectable P. aeruginosa and azurin in their tumors and exhibited increased overall survival when they did, and that azurin administration reduced tumor growth in transgenic mice. Our results suggest host-bacterial symbiotic mutualism acting as a diverse adjunct to the host defense system via inter-kingdom communication mediated by the evolutionarily conserved proteins azurin and human aldolase A. This improved understanding of the symbiotic relationship of bacteria with humans indicates the potential contribution to tumor homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823004 | PMC |
http://dx.doi.org/10.1038/s42003-022-04395-5 | DOI Listing |
Neoplasia
December 2024
Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.
View Article and Find Full Text PDFInt J Gynecol Pathol
December 2024
Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
The incidence of neurotrophic tyrosine kinase receptor (NTRK) fusion uterine sarcoma is extremely low, and reports have been mostly focused on cases localized to the cervix. So far, only 4 cases have been reported of the uterine corpus. In this study, we reported a case of NTRK fusion corpus sarcoma.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.
View Article and Find Full Text PDFPLoS One
December 2024
Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China.
Purpose: Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC.
View Article and Find Full Text PDFPLoS One
December 2024
Servier, Research & Development, Gif-sur-Yvette, France.
Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!