As one of the most significant imaging modalities currently available, magnetic resonance imaging (MRI) has been extensively utilized for clinically accurate cancer diagnosis. However, low signal-to-noise ratio (SNR) and low specificity for tumors continue to pose significant challenges. Inspired by the distance-dependent magnetic resonance tuning (MRET) phenomenon, the tumor microenvironment (TME)-activated off-on T-T dual-mode MRI nanoswitch is presented in the current study to realize the sensitive early diagnosis of tumors. The tumor-specific nanoswitch is designed and manufactured on the basis of PDGFB-conjugating ferroferric oxide coated by Mn-doped silica (PDGFB-FMS), which can be degraded under the high-concentration GSH and low pH in TME to activate the T-T dual-mode MRI signals. The tumor-specific off-on dual-mode MRI nanoswitch can significantly improve the SNR and is used successfully for the accurate diagnosis of early-stage tumors, particularly for orthotopic prostate cancer. In addition, the systemic delivery of the nanoswitch did not cause blood or tissue damage, and it can be excreted out of the body in a timely manner, demonstrating excellent biosafety. Overall, the strategy is a significant step in the direction of designing off-on dual-mode MRI nanoprobes to improve imaging accuracy, which opens up new avenues for the development of new MRI probes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824934 | PMC |
http://dx.doi.org/10.1186/s12951-023-01769-7 | DOI Listing |
Adv Sci (Weinh)
March 2025
High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
Non-alcoholic fatty liver disease (NAFLD)-induced early-stage liver fibrosis is increasingly common. Non-invasive MRI detection offers an important diagnostic method to prevent fibrosis from progressing to cirrhosis or hepatocellular carcinoma. However, because fibrosis is confined to the periportal areas, and changes in tissue structure and stiffness are minimal, standard T- or T-weighted imaging struggles to capture these early-stage lesions.
View Article and Find Full Text PDFNanomedicine
February 2025
Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia.
Iron oxide nanoparticles are a promising candidate for the dual-mode MRI contrast agent, however most of them have limited circulation time and predominant negative contrast. We developed citric acid stabilized superparamagnetic maghemite nanoparticles (CA-SPMNs) with size 3.2 ± 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
Accurate and early tumor diagnosis is critical for effective cancer treatment, yet current diagnostic modalities often face limitations. Fluorescence imaging (FLI) and magnetic resonance imaging (MRI) both offer substantial potential for cancer diagnosis. However, FLI suffers from poor tissue penetration, while MRI lacks molecular specificity.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China.
High-entropy oxides (HEOs) have attracted significant attention owing to their broad compositional tunability and high catalytic activity. However, research in this area is still in its early stages, and it is necessary to develop uniform multifunctional high-entropy nanozymes with appropriate sizes and excellent catalytic properties. In this study, we synthesized spherical high-entropy oxide composite carbon (HEO/C) nanoparticles (NPs) with a uniform distribution of particle size.
View Article and Find Full Text PDFPolymers (Basel)
February 2025
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
Transition-metal ion copper(II) (Cu(II)) has drawn increasing attention as a small-molecular cancer theranostic agent. However, delivering a sufficient dosage of Cu(II) to the tumor site and integrating multiple imaging modalities to achieve precise and effective cancer theranostics remains a critical challenge. Herein, an emerging Cu(II)-based nanocomposite has been synthesized for targeted tumor computed tomography (CT)/magnetic resonance (MR) dual-mode imaging and chemodynamic therapy (CDT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!