The metabolic potency of fungi as camptothecin producer elevates their prospective use as an industrial platform for commercial production, however, the loss of camptothecin productivity by fungi with the storage and subculturing are the major obstacle. Thus, screening for endophytic fungal isolates inhabiting ethnopharmacological plants with an obvious metabolic stability and sustainability for camptothecin biosynthesis could be one of the most feasible paradigms. Aspergillus terreus ON908494.1, an endophyte of Cestrum parqui was morphologically and molecularly verified, displaying the most potent camptothecin biosynthetic potency. The chemical identity of A. terreus camptothecin was confirmed from the HPLC, FTIR and LC-MS/MS analyses, gave the same molecular structure and mass fragmentation patterns of authentic one. The purified putative camptothecin displayed a strong anticancer activity towards HepG-2 and MCF-7 with IC values 0.96 and 1.4 µM, respectively, with no toxicity to OEC normal cells. As well as, the purified camptothecin displayed a significant antifungal activity towards fungal human pathogen Candida albicans, Aspergillus flavus, and A. parasiticus, ensuring the unique structural activity relationships of A. terreus camptothecin, as a powerful dually active anticancer and antimicrobial agent. The camptothecin productivity of A. terreus was maximized by bioprocessing with Plackett-Burman design, with an overall 1.5 folds increment (170.5 µg/L), comparing to control culture. So, the optimal medium components for maximum yield of camptothecin by A. terreus was acid why (2.0 mL/L), Diaion HP20 (2.0 g/L), Amberlite XAD (2.0 g/L), dextrin (5.0 g/L), glucose (10.0 g/L), salicylic acid (2.0 g/L), serine (4.0 g/L), cysteine (4.0 g/L) and glutamate (10.0 g/L), at pH 6 for 15 days incubation. By the 5th generation of A. terreus, the camptothecin yield was reduced by 60%, comparing to zero culture. Interestingly, the productivity of camptothecin by A. terreus has been completely restored and over increased (210 µg/L), comparing to the 3 generation A. terreus (90 µg/L) upon addition of methanolic extracts of Citrus limonum peels, revealing the presence of some chemical signals that triggers the camptothecin biosynthetic machinery. The feasibility of complete restoring of camptothecin biosynthetic-machinery of A. terreus for stable and sustainable production of camptothecin, pave the way for using this fungal isolate as new platform for scaling-up the camptothecin production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824926PMC
http://dx.doi.org/10.1186/s12934-022-02012-yDOI Listing

Publication Analysis

Top Keywords

camptothecin
17
terreus camptothecin
12
terreus
10
aspergillus terreus
8
endophyte cestrum
8
cestrum parqui
8
biosynthetic potency
8
citrus limonum
8
camptothecin productivity
8
camptothecin biosynthetic
8

Similar Publications

Hybrid prodrug nanoassembly for hypoxia-triggered immunogenic chemotherapy and immune modulation.

J Control Release

January 2025

Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Tumor hypoxia is a critical driver of cancer progression, metastasis, and therapy resistance, posing significant challenges in effective cancer treatment. Hypoxia-activable prodrugs offer a promising strategy to target tumors in low-oxygen conditions, but their efficacy is often hindered by intrinsic properties and extrinsic cues. In this study, we developed a dual-prodrug nanoassembly system (CPPA) composed of a hypoxia-triggerable camptothecin (CPT)-based dimeric prodrug (CP) and a lipid-conjugated STAT3 antisense oligonucleotide (ASO) prodrug (PA), aiming to enhance tumor-targeted chemotherapy and overcome the immune evasion within the tumor microenvironment.

View Article and Find Full Text PDF

Correction for 'Camptothecin-based prodrug nanomedicines for cancer therapy' by Renshuai Zhang , , 2023, , 17658-17697, https://doi.org/10.1039/D3NR04147F.

View Article and Find Full Text PDF

Synthesis and antitumor activity of ultra-low molecular weight hyaluronic acid-decorated camptothecin conjugates.

Carbohydr Polym

March 2025

National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China. Electronic address:

Camptothecin (CPT) exhibits potent anticancer activity, but its clinical application is limited by poor solubility and severe side effects. Hyaluronic acid (HA) is gaining attention in drug delivery systems due to its excellent biocompatibility and tumor-targeting properties. In this study, we conjugated CPT to the reducing end of ultra-low molecular weight HA to create a series of HA-decorated CPT conjugates.

View Article and Find Full Text PDF

Importance: Despite the high prevalence of KRAS alterations in pancreatic ductal adenocarcinoma (PDAC), the clinical impact of common KRAS mutations with different cytotoxic regimens is unknown. This evidence is important to inform current treatment and provide a benchmark for emergent targeted KRAS therapies in metastatic PDAC.

Objective: To assess the clinical implications of common KRAS G12 mutations in PDAC and to compare outcomes of standard-of-care multiagent therapies across these common mutations.

View Article and Find Full Text PDF

Immunoconjugates as an Efficient Platform for Drug Delivery: A Resurgence of Natural Products in Targeted Antitumor Therapy.

Pharmaceuticals (Basel)

December 2024

Department "Pharmacology, Pharmacotherapy and Toxicology", Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria.

The present review provides a detailed and comprehensive discussion on antibody-drug conjugates (ADCs) as an evolving new modality in the current therapeutic landscape of malignant diseases. The principle concepts of targeted delivery of highly toxic agents forsaken as stand-alone drugs are examined in detail, along with the biochemical and technological tools for their successful implementation. An extensive analysis of ADCs' major components is conducted in parallel with their function and impact on the stability, efficacy, safety, and resistance profiles of the immunoconjugates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!