Congruence Concept for Comparison of Spectra.

Appl Spectrosc

Spectrometry Laboratory, Investigating Team Ltd., Sopron, Hungary.

Published: April 2023

This paper introduces an alternative, easy-to-implement spectrum comparison concept. The evaluation procedure is illustrated by artificial and attenuated total reflection Fourier transform infrared (ATR FT-IR) spectra, which it can also be extended to other spectrometries (e.g., ultraviolet-visible or UV-Vis and Raman). The evaluation for the comparison of two spectra is divided into four phases: (i) spectrum pre-treatment (e.g., smoothing and background correction), (ii) standard normal variate (SNV) transformation, (iii) regression analysis of SNV spectra, and (iv) calculation of the quantification index (FG). The FG is derived from the formula of R. It characterizes and quantifies the identity and/or similarity of the compared spectra.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00037028231152497DOI Listing

Publication Analysis

Top Keywords

comparison spectra
8
spectra
5
congruence concept
4
concept comparison
4
spectra paper
4
paper introduces
4
introduces alternative
4
alternative easy-to-implement
4
easy-to-implement spectrum
4
spectrum comparison
4

Similar Publications

The increasing global demand for plastic has raised the need for effective waste plastic management due to its long lifetime and resistance to environmental degradation. There is a need for rapid plastic identification to improve the mechanical waste plastic sorting process. This study presents a novel application of Temperature-Programmed Desorption-Direct Analysis in Real Time-High Resolution Mass Spectrometry (TPD-DART-HRMS) that enables rapid characterization of various plastics.

View Article and Find Full Text PDF

Analytical derivative approaches for vibro-polaritonic structures and properties. I. Formalism and implementation.

J Chem Phys

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

Vibro-polaritons are hybrid light-matter states that arise from the strong coupling between the molecular vibrational transitions and the photons in an optical cavity. Developing theoretical and computational methods to describe and predict the unique properties of vibro-polaritons is of great significance for guiding the design of new materials and experiments. Here, we present the ab initio cavity Born-Oppenheimer density functional theory (CBO-DFT) and formulate the analytic energy gradient and Hessian as well as the nuclear and photonic derivatives of dipole and polarizability within the framework of CBO-DFT to efficiently calculate the harmonic vibrational frequencies, infrared absorption, and Raman scattering spectra of vibro-polaritons as well as to explore the critical points on the cavity potential energy surface.

View Article and Find Full Text PDF

Spectroscopic properties of Tb-doped and Tb-Ag codoped lithium tetraborate (LTB) glasses with LiBO (or LiO-2BO) composition are investigated and analysed using electron paramagnetic resonance (EPR), optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectra, PL decay kinetics and absolute quantum yield (QY) measurements. PL spectra of the investigated glasses show numerous narrow emission bands corresponding to the D → F (J = 6-0) and D → F (J = 5-3) transitions of Tb (4f) ions. The most intense PL band of Tb ions at 541 nm (D → F transition) is characterised by a lifetime slightly exceeding 2.

View Article and Find Full Text PDF

Growth of Clathrate Hydrates in Nanoscale Ice Films Observed Using Electron Diffraction and Infrared Spectroscopy.

J Phys Chem Lett

January 2025

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.

Clathrate hydrates (CHs) are believed to exist in cold regions of space, such as comets and icy moons. While spectroscopic studies have explored their formation under similar laboratory conditions, direct structural characterization using diffraction techniques has remained elusive. We present the first electron diffraction study of tetrahydrofuran (THF) and 1,3-dioxolane (DIOX) CHs in the form of nanometer-thin ice films under an ultrahigh vacuum at cryogenic temperatures.

View Article and Find Full Text PDF

One-Shot Synthesis of Sym- and Asym-Expanded Heterohelicene Isomers Exhibiting Narrowband Deep-Blue Fluorescence.

Angew Chem Int Ed Engl

January 2025

Tsinghua University, Chemistry, HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China, 100084, Beijing, CHINA.

Expanded heterohelicene composing of alternating linearly and angularly fused multi-resonance (MR) skeleton has garnered wide interest for their promising narrowband emission. Herein, a pair of sym- and asym-expanded heterohelicene isomers are firstly developed by merging boron/oxygen (B/O)-embedded MR triangulene and indolo[3,2,1-jk]carbazole units via one-shot synthesis. Owing to the fully resonating extended helical skeleton, the target heterohelicenes exhibit significantly narrowed spectra bandwidth while emission red-shifting, thus affording deep-blue narrowband emission with peak at around 460 nm, full-width-at-half-maximum (FWHM) of merely 18 nm and near-unity photoluminescence quantum yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!