A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Visualization of the Lenticulostriate artery with 3-dimensional time-of-flight magnetic resonance angiography combined with the compressed sensing technique using a 3-T magnetic resonance imaging system. | LitMetric

The lenticulostriate artery (LSA) is a vital perforating cerebral artery, whose occlusion often leads to lacunar infarction. Currently, digital subtraction angiography is mainly used to visualize the LSA in the clinical setting; however, its invasiveness is an important limiting factor. Studies have shown that time-of-flight (TOF) sequencing using a high-field magnetic resonance system (7 T) can better image the LSA. However, the diameter of the LSA is extremely small (approximately 0.3-0.7 mm) with relatively slow blood flow velocity; therefore, imaging the LSA with a 3-T magnetic resonance imaging (MRI) scanner remains challenging. This study aimed to visualize the LSA using 3-dimensional-TOF magnetic resonance angiography (MRA) with compressed sensing using a 3-T system and compare the length and number of the LSAs between patients with infarction and normal controls. The scan times of 3D-TOF MRA with and without compressed sensing were 7 min, and 8 min 44 s, respectively. VR displayed the LSA clearly under both conditions. The total number (p > 0.05) and length (p > 0.05) of the LSAs did not differ significantly between 3D-TOF MRA with and without compressed sensing. However, the total length and number of visualized LSAs was significantly lower (p < 0.05) in the infarction group compared to the control group for both TOF MRA and TOF MRA with compressed sensing. TOF MRA combined with compressed sensing is clinically valuable for analyzing the morphological characteristics of the LSA, and shortens the imaging time to 7 min. This combined technique can meet the requirements of shorter scanning times in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2022.12.028DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
20
compressed sensing
16
mra compressed
12
lenticulostriate artery
8
resonance angiography
8
3-t magnetic
8
resonance imaging
8
visualize lsa
8
length number
8
3d-tof mra
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!