This study investigates an electrochemical approach for the treatment of water polluted with per- and poly-fluoroalkyl substances (PFAS), looking at the impact of different variables, contributions from generated radicals, and degradability of different structures of PFAS. Results obtained from a central composite design (CCD) showed the importance of mass transfer, related to the stirring speed, and the amount of charge passed through the electrodes, related to the current density on decomposition rate of PFOA. The CCD informed optimized operating conditions which we then used to study the impact of solution conditions. Acidic condition, high temperature, and low initial concentration of PFOA accelerated the degradation kinetic, while DO had a negligible effect. The impact of electrolyte concentration depended on the initial concentration of PFOA. At low initial PFOA dosage (0.2 mg L), the rate constant increased considerably from 0.079 ± 0.001 to 0.259 ± 0.019 min when sulfate increased from 0.1% to 10%, likely due to the production of SO. However, at higher initial PFOA dosage (20 mg L), the rate constant decreased slightly from 0.019 ± 0.001 to 0.015 ± 0.000 min, possibly due to the occupation of active anode sites by excess amount of sulfate. SO and OH played important roles in decomposition and defluorination of PFOA, respectively. PFOA oxidation was initiated by one electron transfer to the anode or SO, undergoing Kolbe decarboxylation where yielded perfluoroalkyl radical followed three reaction pathways with OH, O and/or HO. PFAS electrooxidation depended on the chemical structures where the decomposition rate constants (min) were in the order of 6:2 FTCA (0.031) > PFOA (0.019) > GenX (0.013) > PFBA (0.008). PFBA with a shorter chain length and GenX with -CF branching had slower decomposition than PFOA. While presence of C-H bonds makes 6:2 FTCA susceptible to the attack of OH accelerating its decomposition kinetic. Conducting experiments in mixed solution of all studied PFAS and in natural water showed that the co-presence of PFAS and other water constituents (organic and inorganic matters) had adverse effects on PFAS decomposition efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.137743DOI Listing

Publication Analysis

Top Keywords

pfoa
9
decomposition rate
8
low initial
8
initial concentration
8
concentration pfoa
8
initial pfoa
8
pfoa dosage
8
rate constant
8
pfas
6
decomposition
6

Similar Publications

Per- and polyfluoroalkylated substances (PFAS) in the feathers and excreta of Gentoo penguins (Pygoscelis papua) from the Antarctic Peninsula.

Sci Total Environ

December 2024

Centro de Investigación para la Sustentabilidad (CIS-UNAB) & Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Av. Alemania 281, Temuco, Chile.

Per- and polyfluoroalkyl substances (PFAS) exhibit widespread global distribution, extending to remote regions including Antarctica. Despite potential adverse effects on seabirds, PFAS exposure among Antarctic penguins remains poorly studied. We investigated the occurrence of 29 PFAS compounds in feathers and excreta of Gentoo penguins (Pygoscelis papua) from Fildes Bay, Antarctica.

View Article and Find Full Text PDF

Comprehensive analysis of transplacental transfer of environmental pollutants detected in paired maternal and cord serums.

J Hazard Mater

December 2024

Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan 430079, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China. Electronic address:

Prenatal exposure to hazardous environmental pollutants is a critical global concern due to their confirmed presence in umbilical cord blood, indicating the ability of pollutants to cross the placental barrier and expose the fetus to harmful compounds. However, the transplacental transfer efficiencies (TTEs) of many pollutants remain underexplored. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitatively analyze 91 environmental pollutants, including 13 bisphenols (BPs), 18 organophosphorus flame retardants (OPFRs), 7 brominated and other flame retardants (BFRs), 34 phthalates (PAEs), and 19 per- and polyfluoroalkyl substances (PFASs), in paired maternal and cord serums.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) have been detected in lake ecosystems globally, even in remote areas at high altitudes. Compared to plain lakes with short water change cycles and significant human influence, plateau lakes are primarily tectonic closed or semi-closed lakes with steep terrain. Their long water change cycles lead to an obvious cumulative effect on pollutants.

View Article and Find Full Text PDF

The best layout design related to the sensor node distribution represents one among the major research questions in Wireless Sensor Networks (WSNs). It has a direct impact on WSNs' cost, detection capabilities, and monitoring quality. The optimization of several conflicting objectives, including as load balancing, coverage, cost, lifetime, connection, and energy consumption of sensor nodes, is necessary for layout optimization.

View Article and Find Full Text PDF

In the present study, two most commonly used Perfluoroalkyl substances (PFASs), namely perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), were determined in 45 tap water samples from the city of Isfahan (Iran) by dispersive liquid-liquid extraction (DLLME) and liquid chromatography-mass spectrophotometry (LC-MS) analysis. Risk assessment was also performed to determine the risk to human health. The mean concentration of PFOA was 38.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!