Whole-plant transpiration, controlled by plant hydraulics and stomatal movement, is regulated by endogenous and environmental signals, with the light playing a dominant role. Stomatal pore size continuously adjusts to changes in light intensity and quality to ensure optimal CO intake for photosynthesis on the one hand, together with minimal water loss on the other. The link between light and transpiration is well established, but the genetic knowledge of how guard cells perceive those signals to affect stomatal conductance is still somewhat limited. In the current study, we evaluated the role of two central light-responsive transcription factors; a bZIP-family transcription factor ELONGATED HYPOCOTYL5 (HY5) and the basic helix-loop-helix (BHLH) transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4), in the regulation of steady-state transpiration. We show that overexpression of PIF4 exclusively in guard cells (GCPIF4) decreases transpiration, and can restrain the high transpiration of the pif4 mutant. Expression of HY5 specifically in guard cells (GCHY5) had the opposite effect of enhancing transpiration rates of WT- Arabidopsis and tobacco plants and of the hy5 mutant in Arabidopsis. In addition, we show that GCHY5 can reverse the low transpiration caused by guard cell overexpression of the sugar sensor HEXOKINASE1 (HXK1, GCHXK), an established low transpiring genotype. Finally, we suggest that the GCHY5 reversion of low transpiration by GCHXK requires the auto-activation of the endogenous HY5 in other tissues. These findings support the existence of an ongoing diurnal regulation of transpiration by the light-responsive transcription factors HY5 and PIF4 in the stomata, which ultimately determine the whole-plant water use efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2022.111583DOI Listing

Publication Analysis

Top Keywords

guard cells
12
transpiration
10
guard cell
8
light-responsive transcription
8
transcription factors
8
transcription factor
8
low transpiration
8
hy5
6
guard
5
pif4
5

Similar Publications

PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.

View Article and Find Full Text PDF

Combined μ-XRF and XANES Track the Behavior of Pb from PM Entering Chinese Cabbage Leaves.

Environ Sci Technol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China.

Atmospheric fine particulate matter (PM) is the main contributor to Pb accumulation in edible Chinese cabbage leaves in North China. PM-Pb primarily enters leaves via stomatal foliar uptake. However, how PM-Pb is transported and stored within the leaf cells of Chinese cabbage remains unclear.

View Article and Find Full Text PDF

Promoter of Vegetable Pea Responds to Abiotic Stresses in Transgenic Tobacco.

Int J Mol Sci

December 2024

Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the promoter in vegetable pea. In the present study, one novel promoter of which shared high similarity to the -type from other plants, was isolated.

View Article and Find Full Text PDF

Partial Inhibition of Epithelial-to-Mesenchymal Transition (EMT) Phenotypes by Placenta-Derived DBMSCs in Human Breast Cancer Cell Lines, In Vitro.

Cells

December 2024

Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia.

Stem cell-based therapies hold significant potential for cancer treatment due to their unique properties, including migration toward tumor niche, secretion of bioactive molecules, and immunosuppression. Mesenchymal stem cells (MSCs) from adult tissues can inhibit tumor progression, angiogenesis, and apoptosis of cancer cells. We have previously reported the isolation and characterization of placenta-derived decidua basalis mesenchymal stem cells (DBMSCs), which demonstrated higher levels of pro-migratory and anti-apoptotic genes, indicating potential anti-cancer effects.

View Article and Find Full Text PDF

First Report from Saudi Arabia of Trimethylaminuria Caused by a Premature Stop Codon Mutation in the Gene.

Appl Clin Genet

December 2024

Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.

Background: Trimethylaminuria (TMAU) is a rare recessive genetic disorder with limited global prevalence. To date, there have been no official reports of TMAU cases documented in Saudi Arabia.

Purpose: In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) method for the analysis of trimethylamine (TMA) and Trimethylamine N-Oxide (TMAO) in urine and plasma samples for the first reported case of TMAU in Saudi Arabia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!