Non-melanoma skin cancer is one of the most common malignancies reported with high number of morbidities, demanding an advanced treatment option with superior chemotherapeutic effects. Due to high degree of drug resistance, conventional therapy fails to meet the desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells. Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The NLCs were optimized using central composite design that showed an average particle size of 206 nm and a zeta potential of -34 mV. In addition, in vitro and ex vivo drug permeations studies demonstrated the effective delivery of both drugs in the skin layers via lipid structured nanocarriers. Also, the prepared FU-CBD-NLCs showed promising effect in-vitro cell studies including MTT assays, wound healing and cell cycle as compared to the conventional formulation. Moreover, dermatokinetic studies shows there was superior deposition of drugs at epidermal and the dermal layer when treated with FU-CBD-NLCs. In the end, overall study offered a novel combinatorial chemotherapy that could be an option for the treatment of non-melanoma skin cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2022.122580DOI Listing

Publication Analysis

Top Keywords

non-melanoma skin
12
skin cancer
12
treatment non-melanoma
8
formulation development
4
development novel
4
novel lipid-based
4
lipid-based combinatorial
4
combinatorial advanced
4
advanced nanoformulation
4
nanoformulation effective
4

Similar Publications

Corrigendum to "Artificial intelligence-driven hydrogel microneedle patches integrating 5-fluorouracil inclusion complex-loaded flexible pegylated liposomes for enhanced non-melanoma skin cancer treatment" [Int. J. Pharm. 669 (2025) 125072].

Int J Pharm

January 2025

Pharmaceutical Development of Green Innovations Group (PDGIG) Department of Industrial Pharmacy Faculty of Pharmacy Silpakorn University Nakhon Pathom Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000 Thailand. Electronic address:

View Article and Find Full Text PDF

Fingolimod and risk of skin cancer among individuals with multiple sclerosis: a population-based cohort study protocol.

BMJ Open

January 2025

Collaboration for Outcomes Research and Evaluation (CORE), Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada

Introduction: Long-term population-based safety studies, applying advanced causal inference techniques, including an active comparator with new-user design, are needed to investigate skin cancer outcomes among individuals with multiple sclerosis (MS) treated with fingolimod. This study aims to describe a protocol for investigating the relationship between fingolimod use and the incidence of skin cancer among individuals with MS.

Methods And Analysis: We will use population-based administrative health data from two Canadian provinces (British Columbia and Alberta) to conduct an observational cohort 'trial emulation' study with an active comparator and new-user design.

View Article and Find Full Text PDF

Cutaneous squamous scell carcinoma (cSCC) is a frequent non-melanoma skin cancer that originates from keratinocytes with increased prevalence. cSCC can be either in situ, as in Bowen's disease, or extended. Advanced age, accumulated sun exposure, light pigmentation, and prior skin cancer diagnosis are all significant risk factors for cSCC.

View Article and Find Full Text PDF

Arsenic (As) is a risk factor for non-melanoma skin cancer (NMSC). From a six-year follow-up study on 7000 adults exposed to As, we reported the associations of single-nucleotide variation in tumor tissue and gene expression. Here, we identify the associations of small deletions (DELs) and transcriptomic profiles in NMSC.

View Article and Find Full Text PDF

A proof-of-concept study for precise mapping of pigmented basal cell carcinoma in asian skin using multispectral optoacoustic tomography imaging with level set segmentation.

Eur J Nucl Med Mol Imaging

January 2025

A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, Nanos, Singapore, 138669, Republic of Singapore.

Purpose: Basal Cell Carcinoma (BCC), the most common subtype of non-melanoma skin cancers (NMSC), is prevalent worldwide and poses significant challenges due to their increasing incidence and complex treatment considerations. Existing clinical approaches, such as Mohs micrographic surgery, are time-consuming and labour-intensive, requiring meticulous layer-by-layer excision and examination, which can significantly extend the duration of the procedure. Current optical imaging solutions also lack the necessary spatial resolution, penetration depth, and contrast for effective clinical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!