Dietary factors are fundamental in tumorigenesis throughout our lifetime. A spicy diet has been ambiguous on the development of cancers, especially in the study of colon cancer metastasis. Here, we utilized a mouse metastasis model to test the potential role of capsaicin in influencing metastasis. Long-term continuous administration of capsaicin diet (300 mg/kg) to mice promotes the formation of liver pre-metastatic niche to facilitate the metastasis of colon cancer cells. Bacteria translocation to liver is clearly observed. Capsaicin increases intestinal barrier permeability and disrupts gut vascular barrier by altering the composition of gut microbiota. Capsaicin not only changes the abundance of mucin-related bacteria like Akkermanisa and Muribaculaceae, but also bacteria involved in bile acids metabolism. Dysregulated bile acids profile is related to the recruitment of natural killer T (NKT) cells in pre-metastatic niche, primary bile acid α-Muricholic acid can enhance the recruitment of NKT cells, while secondary bile acids Glycoursodeoxycholic acid and Taurohyodeoxycholic acid impair the recruitment of NKT cells. These findings reveal long term consumption of capsaicin increases the risk of cancer metastasis through modulating the gut microbiota. Capsaicin (300 mg/kg) disrupts gut barrier and promotes the translocation of bacteria to liver, while altered bile acids metabolism affects the recruitment of NKT cells in liver, forming a pre-metastatic niche and promoting cancer metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2022.106643 | DOI Listing |
J Control Release
January 2025
Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
Tumor hypoxia is a critical driver of cancer progression, metastasis, and therapy resistance, posing significant challenges in effective cancer treatment. Hypoxia-activable prodrugs offer a promising strategy to target tumors in low-oxygen conditions, but their efficacy is often hindered by intrinsic properties and extrinsic cues. In this study, we developed a dual-prodrug nanoassembly system (CPPA) composed of a hypoxia-triggerable camptothecin (CPT)-based dimeric prodrug (CP) and a lipid-conjugated STAT3 antisense oligonucleotide (ASO) prodrug (PA), aiming to enhance tumor-targeted chemotherapy and overcome the immune evasion within the tumor microenvironment.
View Article and Find Full Text PDFMol Cancer
January 2025
Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy.
View Article and Find Full Text PDFBiology (Basel)
December 2024
Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, BC, Mexico.
Liver metastases frequently occur in pancreatic and colorectal cancer. Their development is promoted by tumor-derived exosomes with the integrin αβ on their membrane. This integrin directs exosomes to the liver, where they promote a TGF-β-dependent pre-metastatic niche.
View Article and Find Full Text PDFHum Cell
January 2025
Integrated Head and Neck Oncology Program (DSRG-5), Mazumdar Shaw Medical Foundation, Narayana Health, Bangalore, India.
FASEB J
January 2025
Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Cancer metastasis is the leading cause of cancer-related deaths, making early detection and the prevention of metastatic progression critical research priorities. Recent studies have expanded our understanding of CEMIP (KIAA1199, HYBID), revealing its involvement in cancer metastasis and its potential role in slowing cancer progression. CEMIP plays critical roles in several stages of cancer metastasis: First, CEMIP promotes cancer cell proliferation to maintain cell heterogeneity before the metastasis process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!