Sustainable and reagent-free cathodic precipitation for high-efficiency removal of heavy metals from soil leachate.

Environ Pollut

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. Electronic address:

Published: March 2023

Heavy metal pollution of soils has become a serious environmental problem. Soil washing with degradable reagents is an effective remediation technique of heavy metal pollution, and the generated leachate must be appropriately treated before discharge. However, the existing methods usually have the problems of large consumption of regents, high cost, and secondary pollution. This study proposed a reagent-free electrochemical precipitation method to remove mixed heavy metal ions extracted from soils by citrate using inert electrodes (IrO-TaO/Ti anode and graphite cathode). The results showed that the low potential of cathode led to the electrodeposition of Cd; the local alkaline environment provided by electro-mediated water reduction caused the hydrolytic precipitation of Zn and Pb; and the precipitation of Fe washed out from Fe-rich soil resulted in the coprecipitation of As on cathode surface. These combined cathodic precipitation processes decreased the concentrations of toxic heavy metals by over 99.4% after 12 h of electrolysis at 26 mA cm. The electrodes exhibited high stability after multiple successive cycles of reuse. The concentrations of As, Zn, Pb and Cd in the leachate decreased to below the limits of industrial wastewater discharge in each cycle, and those in soils could be reduced by 53.8%, 58.8%, 25.5%, and 70.2% at the initial concentrations of 1549, 1016, 310 and 50 mg kg, respectively. The heavy metal removal rate increased with increasing current density in the range of 0-52 mA cm. This work provides an efficient and sustainable method for the remediation of site soils polluted by mixed heavy metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.121002DOI Listing

Publication Analysis

Top Keywords

heavy metal
16
heavy metals
12
cathodic precipitation
8
metal pollution
8
mixed heavy
8
heavy
7
precipitation
5
sustainable reagent-free
4
reagent-free cathodic
4
precipitation high-efficiency
4

Similar Publications

The jute hairy caterpillar, Spilosoma obliqua (Lepidoptera: Erebidae) is considered as one of the major threats to jute cultivation. The best eco-friendly methods to combat these jute pests involve administration of nano-biopesticides, as a successful alternative to the toxic chemicals. In this study, a nano-biopesticide formulation containing green synthesized silver nanoparticles (Ag NPs) using Ocimum sanctum leaf extract has been proposed.

View Article and Find Full Text PDF

In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.

View Article and Find Full Text PDF

Exploring the efficacy of fluorouracil and platinum based chemotherapy in advanced hepatocellular carcinoma to bridge the treatment gap in resource limited settings.

Sci Rep

January 2025

Division of Medical Oncology, Department of Internal Medicine, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, 16247, Korea.

Advanced hepatocellular carcinoma (HCC) poses treatment challenges, especially where access to multi-kinase inhibitors and ICIs is limited by high costs and lack of insurance. This study evaluates the effectiveness of 5-fluorouracil (5-FU) plus platinum-based chemotherapy as an alternative systemic treatment for advanced HCC. A retrospective analysis of advanced HCC patients treated with 5-FU plus platinum-based chemotherapy was conducted.

View Article and Find Full Text PDF

Nanopesticides have been recently introduced as novel pesticides to overcome the drawbacks of using traditional synthetic pesticides. The present study evaluated the acaricidal activity of Copper/Graphene oxide core-shell nanoparticles against two tick species, Rhipicephalus rutilus and Rhipicephalus turanicus. The Copper/Graphene oxide core-shell nanoparticles were synthetized through the solution plasma (SP) method under different conditions.

View Article and Find Full Text PDF

The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!