Effluents of municipal wastewater treatment plants (WWTPs) are a major source of microplastics (MP) in the terrestrial and aquatic environment; there is growing concern over the environmental and health impacts of MP pollution. In this study, the MP removal (MP cut-off size= 25 µm) in a lagoon-based wastewater treatment system was predicted by developing a model based on the multimedia modelling approach and utilising MP-specific properties for improving the understanding of the fate and transport of MP in such treatment processes. The high MP removal efficiency of the lagoon treatment system as predicted by the model (99.3%) and determined with the site wastewater samples (97%) could be attributed to its high HRT (>200 days, including that for the storage lagoons) that would allow effective MP removal with the system. Evaluation of the model predictions of MP concentration demonstrated reasonable alignment with measured concentrations in the facultative, maturation and winter storage lagoons of the system. Further evaluation of model predictions for various MP size classes (25-100, 100-200, 200-500 and >500 µm) obtained reasonable predictions for MP within the size range of 25-500 µm, indicating that the model is better used for predicting MP within that size range. The sensitivity analysis revealed the model predictions to be sensitive towards the operating/water quality parameters in the order of influent wastewater flowrate, MP concentration in influent wastewater, and MP settling rate in the water column of the lagoon. The study showed the potential of the developed model as a quantitative assessment tool for better management of MP in lagoon-based WWTPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.130694 | DOI Listing |
Chemistry
December 2024
Central China Normal University, Key Laboratory of Pesticide & Chemical Biology CCNU , Ministry of Education;, 152#, luoyu road, 430079, Wuhan, CHINA.
The detrimental effects of heavy metal aqueous pollution are attracting people's attention increasingly. Membrane separation technology plays a pivotal role in the treatment of aqueous pollution due to its low energy consumption and excellent separation effect. Inspired by the strong adhesion of heavy metal ions by the dopamine in mussel protein, we have fabricated the 5%, 10%, 20% and 30% proportion of polydopamine (PDA)/Polymethyl methacrylate (PMMA) blend membranes with dopamine structure by solvent-induced phase conversion.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy.
Sewage sludge applications as soil amendment call for a proper ecological risk assessment due to unexpected delivery of toxic chemicals and materials. Standardized acute toxicity assays have proven to provide limited information in terms of potential hazard for soil organisms. Here, sublethal endpoints as physiological and tissue alterations were proposed as suitable tools for sewage sludge ecological risk assessment.
View Article and Find Full Text PDFParasitol Res
December 2024
Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
Strongyloides stercoralis and Opisthorchis viverrini are helminth parasites responsible for significantly neglected tropical diseases. This study aimed to evaluate the prevalence of these parasites and the risk factors for S. stercoralis and O.
View Article and Find Full Text PDFExtremophiles
December 2024
Miami College, Henan University, Kaifeng, 475000, Henan, China.
Azo dye wastewater has garnered significant attention from researchers because of its association with high-temperature, high-salt, and high-alkali conditions. In this study, consortium ZZ efficiently decolorized brown D3G under halophilic and thermophilic conditions. he results indicated that consortium ZZ, which was mainly dominated by Marinobacter, Bacillus, and Halomonas, was achieved decolorization rates ranging from 1 to 10% at temperatures between 40 °C and 50 °C, while maintaining a pH range of 7 to 10 for direct brown D3G degradation.
View Article and Find Full Text PDFChem Asian J
December 2024
shandong university, chemistry, Shanda nanlu No.27, JInan, Shandong, jinan, CHINA.
The rapid advancement of industrial production has led to an increase in water pollutants, posing a significant threat to public health. With the deepening of research on pollutant adsorbents. The application of silsesquioxane-based cross-linked polymer networks in water pollution treatment has gradually attracted people's attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!