A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Error-Mitigated Quantum Metrology via Virtual Purification. | LitMetric

Error-Mitigated Quantum Metrology via Virtual Purification.

Phys Rev Lett

NTT Computer and Data Science Laboratories, NTT Corporation, Musashino 180-8585, Japan.

Published: December 2022

Quantum metrology with entangled resources aims to achieve sensitivity beyond the standard quantum limit by harnessing quantum effects even in the presence of environmental noise. So far, sensitivity has been mainly discussed from the viewpoint of reducing statistical errors under the assumption of perfect knowledge of a noise model. However, we cannot always obtain complete information about a noise model due to coherence time fluctuations, which are frequently observed in experiments. Such unknown fluctuating noise leads to systematic errors and nullifies the quantum advantages. Here, we propose an error-mitigated quantum metrology that can filter out unknown fluctuating noise with the aid of purification-based quantum error mitigation. We demonstrate that our protocol mitigates systematic errors and recovers superclassical scaling in a practical situation with time-inhomogeneous bias-inducing noise. Our result is the first demonstration to reveal the usefulness of purification-based error mitigation for unknown fluctuating noise, thus paving the way not only for practical quantum metrology but also for quantum computation affected by such noise.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.250503DOI Listing

Publication Analysis

Top Keywords

quantum metrology
16
unknown fluctuating
12
fluctuating noise
12
error-mitigated quantum
8
quantum
8
noise
8
noise model
8
systematic errors
8
error mitigation
8
metrology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!