InP-based quantum dots (QDs) are an environment-friendly alternative to their heavy metal-ion-based counterparts. Herein we report a simple procedure for synthesizing blue emissive InP QDs using oleic acid and oleylamine as surface ligands, yielding ultrasmall QDs with average sizes of 1.74 and 1.81 nm, respectively. Consecutive thin coating with ZnS increased the size of these QDs to 4.11 and 4.15 nm, respectively, alongside a significant enhancement of their emission intensities centered at ∼410 nm and ∼430 nm, respectively. Pure phase synthesis of these deep-blue emissive QDs is confirmed by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Armed with femtosecond to millisecond time-resolved spectroscopic techniques, we decipher the energy pathways, reflecting the effect of successive ZnS passivation on the charge carrier (electrons and holes) dynamics in the deep-blue emissive InP, InP/ZnS, and InP/ZnS/ZnS QDs. Successive coating of the InP QDs increases the intraband relaxation times from 200 to 700 fs and the lifetime of the hot electrons from 2 to 8 ps. The lifetime of the cold holes also increase from 1 to 4 ps, and remarkably, the Auger recombination escalates from 15 to 165 ps. The coating also drastically decreases the quenching by the molecular oxygen of the trapped charge carriers at the surfaces of the QDs. Our results provide clues to push further the emission of InP QDs into more energetically spectral regions and to increase the fluorescence quantum yield, targeting the construction of efficient UV-emissive light-emitting devices (LEDs).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10089568 | PMC |
http://dx.doi.org/10.1021/acsami.2c16289 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
Ligand-functionalized InP-based quantum dots (QDs) have been developed as an innovative class of nontoxic photosensitizer suitable for antimicrobial applications, aimed at reducing or preventing pathogen transmission from one host to another via high contact surfaces. A hot injection method followed by functionalization via ligand exchange with 9-anthracene carboxylic acid (ACA) yielded the desired core/shell InP/ZnSe/ZnS QDs. Transmission electron microscopy (TEM) revealed these QDs to be uniform in size (∼3.
View Article and Find Full Text PDFMolecules
December 2024
Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
Ternary InGaP quantum dots (QDs) have emerged as promising materials for efficient blue emission, owing to their tunable bandgap, high stability, and superior optoelectronic properties. However, most reported methods for Ga incorporation into the InP structure have predominantly relied on cation exchange in pre-grown InP QDs at elevated temperatures above 280 °C. This is largely due to the fact that, when heating In and P precursors in the presence of Ga, an InP/GaP core-shell structure readily forms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
High-performance, environmentally friendly indium phosphide (InP)-based quantum dots (QDs) are urgently needed to meet the demands of rapidly evolving display and lighting technologies. By adopting the highly efficient and cost-effective one-pot method and utilizing aluminum isopropoxide (AIP) as the Al source, a series of Al-doped InP/(Al)ZnS QDs with emission maxima ranging from 480 to 627 nm were synthesized. The photoluminescence quantum yield (PLQY) of the blue, green, yellow, orange, and red QDs, with emission peaks at 480, 509, 560, 600, and 627 nm, reached 34%, 62%, 86%, 96%, and 85%, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.
View Article and Find Full Text PDFNano Lett
January 2025
Graduate School of Science, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
In colloidal quantum dots (QDs), excitons are confined within nanoscale dimensions, and the relaxation of hot electrons occurs through Auger cooling. The behavior of hot electrons is evident under ambient pressure. Nanocrystal characteristics, including their size, are key to determining hot electron behavior because they serve as the stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!