Arabidopsis thaliana and Brassica rapa are in the same evolutionary lineage, although the latter experienced an additional whole genome triplication event. Therefore, it would be intriguing to investigate the traits that gene duplication imposes to mediate plant stress tolerance. Here, we noticed that B. rapa abiotic stress resistance (ASR) genes which code at least one stress responsive domain have a significantly higher number of paralogs than A. thaliana. Analysing the disordered content of the ASR genes in both species, we found that intrinsically disordered residues (IDR) are specifically enriched in whole genome duplication (WGD) derived paralogs. Subsequently, domain similarity analysis between WGD pairs of both species has revealed that majority of WGD pairs in B. rapa did not share domains with each other. Furthermore, domain enrichment analysis has shown that B. rapa paralogs contain 36 distinct stress responsive enriched domains, significantly higher than A. thaliana paralogs. Next, we performed MSA to investigate the domain conservation between orthologs and ohnologs pairs, we found that 80.13% of B. rapa ohnologs acquire new domains, depicting the fact that ohnologs play a significant role in stress-related behaviours. The average IDR content of the ohnologs enriching new domains after gene duplication in B. rapa (0.19), is also significantly higher than A. thaliana (0.04). Interestingly, we also found that all of these attributes i.e., exhibiting higher number of WGD paralogs and enhancement of IDR in ASR genes of B. rapa compared to A. thaliana is exclusive for ASR genes only. No such significant differences were observed in randomly selected non-ASR genes between the two species. Together these results provide strong support for the hypothesis that augmentation of IDR content followed by a whole genome duplication event imposes the stress resistance potentiality in B. rapa. This research will shed light on the mechanism of how B. rapa is able to successfully adapt to stress over the evolutionary timescale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10265-022-01432-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!