Studies on the chemical mechanisms of furfural formation showed the possibility to apply a new differential catalysis of hemicellulose - its depolymerisation and pentose dehydration to furfural. This change led to the increase in furfural yield and essential decrease of cellulose destruction. The lignocellulose residue that remains after the production of furfural may be subjected to enzymatic hydrolysis to glucose and the subsequent fermentation to ethanol. The remaining lignin appeared to be suitable for the production of additional various value-added products including medicinal mushrooms and laccase-containing enzyme complexes. Based on these developments, an innovative concept is proposed for the waste-free use of lignocellulose to obtain various valuable products. KEY POINTS: • New chemical mechanism of furfural production. • New lignocellulose pretreatment does not damage cellulose and lignin. • Lignocellulose may be processed using waste-free technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-022-12353-8 | DOI Listing |
Bioresour Technol
February 2023
School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus 4036, Stavanger, Norway. Electronic address:
Lignocellulose biomass during pretreatment releases various compounds, among them the most important is reducing sugars, which can be utilized for the production of biofuels and some other products. Thereby, innovative greener pretreatment techniques for lignocellulosic materials have been considered to open a new door in the aspects of digestibility of the rigid carbohydrate-lignin matrix to reduce the particle size and remove hemicellulose/lignin contents to successfully yield valid bioproducts. This article reviews about the composition of lignocelluloses and emphasizes various green pretreatments viz novel green solvent-based IL and DES steam explosion, supercritical carbon dioxide explosion (Sc-CO2) and co-solvent enhanced lignocellulosic fractionation (CELF) along with suitable mechanistic pathway of LCB pretreatment process.
View Article and Find Full Text PDFBioresour Technol
November 2022
School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea. Electronic address:
This review mainly determines novel and advance physical, chemical, physico-chemical, microbiological and nanotechnology-based pretreatment techniques in lignocellulosic biomass pretreatment for bio-H2 production. Further, aim of this review is to gain the knowledge on the lignocellulosic biomass pretreatment and its priority on the efficacy of bio-H2 and positive findings. The influence of various pretreatment techniques on the structure of lignocellulosic biomass have presented with the pros and cons, especially about the cellulose digestibility and the interference by generation of inhibitory compounds in the bio-enzymatic technique as such compounds is toxic.
View Article and Find Full Text PDFPlants (Basel)
June 2022
CONACYT-Colegio de Postgraduados Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico.
Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioenergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in , and evaluated their expression patterns in silico and experimentally.
View Article and Find Full Text PDFWaste Manag Res
November 2015
Walloon Centre of Industrial Biology (CWBI), University of Liege, Belgium.
The accessibility of fermentable substrates to enzymes is a limiting factor for the efficient bioconversion of agricultural wastes in the context of sustainable development. This paper presents the results of a biochemical analysis performed on six combined morphological parts of Williams Cavendish Lignocellulosic Biomass (WCLB) after steam cracking (SC) and steam explosion (SE) pretreatments. Solid (S) and liquid (L) fractions (Fs) obtained from SC pretreatment performed at 180°C (SLFSC180) and 210°C (SLFSC210) generated, after diluted acid hydrolysis, the highest proportions of neutral sugar (NS) contents, specifically 52.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2013
Walloon Centre of Industrial Biology (CWBI), Université de Liège, Bd du Rectorat, 29, B40-P70, 4000, Liège, Belgium,
We studied banana lignocellulosic biomass (BALICEBIOM) that is abandoned after fruit harvesting, and assessed its biochemical methane potential, because of its potential as an energy source. We monitored biogas production from six morphological parts (MPs) of the "Williams Cavendish" banana cultivar using a modified operating procedure (KOP) using KOH. Volatile fatty acid (VFA) production was measured using high performance liquid chromatography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!