AI Article Synopsis

  • - The study focuses on a photonic crystal fiber sensor that utilizes surface plasmon resonance (SPR), analyzed through the finite element method.
  • - Key performance metrics include a maximum wavelength sensitivity of 24,600 nm/RIU, optimal resolution of 4.07×10, and amplitude sensitivity of 1164.13, applicable for refractive indices from 1.29 to 1.39.
  • - This sensor shows great potential for use in areas like biomolecular and biochemical sensing, environmental monitoring, and food safety.

Article Abstract

Surface plasmon resonance (SPR) is widely used in photonic crystal fiber sensors. In this work, a photonic crystal fiber sensor based on mode excited SPR is designed and analyzed by the finite element method. The maximum wavelength sensitivity, optimal resolution, and amplitude sensitivity of the optical fiber sensor are 24,600 nm/RIU, 4.07×10, and 1164.13, respectively, for the refractive index range between 1.29 and 1.39. The sensor has excellent properties and wide application prospects in bimolecular and biochemical sensing, environmental monitoring, food safety, and other fields.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.474692DOI Listing

Publication Analysis

Top Keywords

photonic crystal
12
mode excited
8
surface plasmon
8
plasmon resonance
8
crystal fiber
8
fiber sensor
8
excited surface
4
resonance high-sensitivity
4
high-sensitivity sensing
4
sensing photonic
4

Similar Publications

NIR-Reflective Black Photonic Films Designed for Effective LiDAR Recognition.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Conventional dark-tone paints absorb both visible light and near-infrared (NIR) wavelengths, posing a challenge for light detection and ranging (LiDAR) recognition in autonomous driving. To overcome this issue, various chemical and structural coating materials have been explored to selectively reflect NIR. In this study, we newly propose colloidal photonic crystals with a stopband in the NIR range, fabricated through the spontaneous formation of crystalline arrays of silica particles dispersed in a photocurable resin, as a potential solution.

View Article and Find Full Text PDF

Motion-less depth-selective optogenetic probe using tapered fiber and an electrically tuneable liquid crystal steering element.

Biomed Opt Express

January 2025

Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.

A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.

View Article and Find Full Text PDF

Biocomposites of 2D layered materials.

Nanoscale Horiz

January 2025

Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute and Huck Institute of Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Molecular composites, such as bone and nacre, are everywhere in nature and play crucial roles, ranging from self-defense to carbon sequestration. Extensive research has been conducted on constructing inorganic layered materials at an atomic level inspired by natural composites. These layered materials exfoliated to 2D crystals are an emerging family of nanomaterials with extraordinary properties.

View Article and Find Full Text PDF

We present, for the first time, to our knowledge, power splitters with multiple channel configurations in one-dimensional grating waveguides (1DGWs) that maintain crystal lattice-sensitive Bloch mode profiles without perturbation across all output channels, all within an ultra-miniaturized footprint of just 2.1 × 2.2 μm.

View Article and Find Full Text PDF

Topological interface states (TISs), known for their distinctive capabilities in manipulating electromagnetic waves, have attracted significant interest. However, in conventional all-dielectric one-dimensional photonic crystal (1DPC) heterostructures, TISs strongly depend on incident angle, which limits their practical applications. Here, we realize an angle-independent TIS in 1DPC heterostructures containing hyperbolic metamaterials (HMMs) for transverse magnetic polarized waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!