Bright squeezed light can be generated in optical fibers utilizing the Kerr effect for ultrashort laser pulses. However, pulse propagation in a fiber is subject to nonconservative effects that deteriorate the squeezing. Here, we analyze two-mode polarization squeezing, which is SU(2)-invariant, robust against technical perturbations, and can be generated in a polarization-maintaining fiber. We perform a rigorous numerical optimization of the process and the pulse parameters using our advanced model of quantum pulse evolution in the fiber that includes various nonconservative effects and real fiber data. Numerical results are consistent with experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.481195 | DOI Listing |
bioRxiv
December 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
Cytoplasmic dynein-1, a microtubule-based motor protein, requires dynactin and an adaptor to form the processive dynein-dynactin-adaptor (DDA) complex. The role of microtubules in DDA assembly has been elusive. Here, we reveal detailed structural insights into microtubule-mediated DDA assembly using cryo-electron microscopy.
View Article and Find Full Text PDFSci Rep
January 2025
Departemant of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.
View Article and Find Full Text PDFSci Rep
December 2024
College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Ch 149, Hamburg 22761, Germany.
High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
December 2024
Max-Planck-Institut für die Physik des Lichts, Erlangen 91058, Germany.
We derive a compact expression for the second-order correlation function [Formula: see text] of a quantum state in terms of its Wigner function, thereby establishing a direct link between [Formula: see text] and the state's shape in phase space. We conduct an experiment that simultaneously measures [Formula: see text] through direct photocounting and reconstructs the Wigner function via homodyne tomography. The results confirm our theoretical predictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!