A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative investigation on a period variation reduction method for the fabrication of large-area gratings using two-spherical-beam laser interference lithography. | LitMetric

AI Article Synopsis

  • Gratings made with Laser Interference Lithography (LIL) show nonuniform periods, especially as substrate sizes increase.
  • A new noninvasive method using a concave vacuum chuck significantly improves period uniformity on 4-inch silicon wafers, reducing variation by 86% for a 1000 nm central grating period.
  • The study includes experimental results showing the effectiveness of the concave chuck, comparisons between different LIL setups, and verification of wafer flatness through optical profilometry.

Article Abstract

Gratings produced by two-spherical-beam Laser Interference Lithography (LIL) will have a nonuniform period, and the associated period variation is larger with the increase of the substrate size. This work quantitatively investigates a noninvasive method for improving the period variation on 4-inch silicon wafers. By temporarily deforming the flexible silicon wafer using a customized concave vacuum chuck [J. Vac. Sci. Technol. B19(6), 2347 (2001)10.1116/1.1421558], we show that the fabricated gratings will have improved period uniformity, with the period variation reduced by 86% at the 1000 nm central grating period setting. This process is a simple and efficient way to achieve linear gratings without altering the LIL configuration with two spherical beams. We present experimental results on the impact of a concave vacuum chuck on the chirp reduction at different grating period settings. Then, we compare two different LIL configurations with different wavelength sources concerning their influence on the efficiency of period variation reduction. Finally, the flatness of the 4-inch silicon wafers due to the temporary bending process is verified using optical profilometry measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.478688DOI Listing

Publication Analysis

Top Keywords

period variation
20
period
9
variation reduction
8
two-spherical-beam laser
8
laser interference
8
interference lithography
8
4-inch silicon
8
silicon wafers
8
concave vacuum
8
vacuum chuck
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!