Transient absorption spectroscopy is a powerful tool to monitor the out-of-equilibrium optical response of photoexcited semiconductors. When this method is applied to two-dimensional semiconductors deposited on different substrates, the excited state optical properties are inferred from the pump-induced changes in the transmission/reflection of the probe, i.e., ΔT/T or ΔR/R. Transient optical spectra are often interpreted as the manifestation of the intrinsic optical response of the monolayer, including effects such as the reduction of the exciton oscillator strength, electron-phonon coupling or many-body interactions like bandgap renormalization, trion or biexciton formation. Here we scrutinize the assumption that one can determine the non-equilibrium optical response of the TMD without accounting for the substrate used in the experiment. We systematically investigate the effect of the substrate on the broadband transient optical response of monolayer MoS (1L-MoS) by measuring ΔT/T and ΔR/R with different excitation photon energies. Employing the boundary conditions given by the Fresnel equations, we analyze the transient transmission/reflection spectra across the main excitonic resonances of 1L-MoS. We show that pure interference effects induced by the different substrates explain the substantial differences (i.e., intensity, peak energy and exciton linewidth) observed in the transient spectra of the same monolayer. We thus demonstrate that the substrate strongly affects the magnitude of the exciton energy shift and the change of the oscillator strength in the transient optical spectra. By highlighting the key role played by the substrate, our results set the stage for a unified interpretation of the transient response of optoelectronic devices based on a broad class of TMDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.479518 | DOI Listing |
Clin Transl Med
January 2025
Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.
Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.
Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.
Nat Commun
January 2025
Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy.
The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances.
View Article and Find Full Text PDFCont Lens Anterior Eye
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China. Electronic address:
Purpose: To develop a Chinese version of the 8-item Contact Lens Dry Eye Questionnaire (CLDEQ-8) with cross-cultural adaption and clinical validation among soft contact lens wearers (SCL) in China.
Methods: The translation and adaptation of the Chinese CLDEQ-8 (C-CLDEQ-8) followed a rigorous methodological process based on cross-cultural research guidelines consisting of three main phases: 1) forward and backward translation of original CLDEQ-8 into Chinese, 2) cross-cultural adaptation performed by medical advising committee, and 3) clinical validation and repeatability test of the translated questionnaire on Chinese SCL wearers. Rasch analysis was also performed to investigate the psychometric properties of C-CLDEQ-8.
Int J Biol Macromol
January 2025
Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada. Electronic address:
This study explores the effect of sucrose addition on the properties of chiral nematic cellulose nanocrystal (CNC) films for potential food industry applications, including biodegradable packaging and food coloring. The addition of sucrose altered the films' structural color, shifting from blue in pure CNC films to aqua blue, green, yellow-green, and red with increasing sucrose concentrations (up to 21 %). Surface analysis revealed a reduction in contact angle from 96° to 48° due to sucrose's hydrophilic nature and smoother film surfaces.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:
Utilizing cellulose nanocrystals (CNCs) to mimic biological skin capable of converting external stimuli into optical and electrical signals represents a significant advancement in the development of advanced photonic materials. However, traditional CNC photonic materials typically exhibit static and singular optical properties, with their structural color and mechanical performance being susceptible to water molecules, thereby limiting their practical applications. In this study, CNC-based conductive elastomers with dynamic mechanochromism, fluorescence responsiveness, and enhanced water resistance were developed by incorporating carbon quantum dots (C QDs) and hydrophobic deep eutectic solvents (HDES) into CNC photonic films via an in-situ swelling-photopolymerization method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!