An optical phased array (OPA) is one of the most promising methods of light detection and ranging. A non-uniform array with different emitter distances is a method to realize OPA steering without grating lobes or a distance between two adjacent emitters larger than /2. However, the side mode suppression ratio (SMSR) will decrease as OPA turns into a large angle. In this paper, 64-, 128-, and 256-channel non-uniform OPAs are optimized by non-dominated sorting genetic algorithm-II (NSGA-II), which is a multi-objective optimization algorithm. Compared with arrays optimized by a genetic algorithm, the SMSR at 80° improves by 2.18, 2.61, and 2.56 dB, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.477363 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory for Extreme Photonics and Instrumentation, International Research Center for Advanced Photonics, Ningbo Innovation Center, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
The frequency-modulated continuous-wave (FMCW) technology combined with optical phased array (OPA) is promising for the all-solid-state light detection and ranging (LiDAR). We propose and experimentally demonstrate a silicon integrated OPA combined with an optical frequency microcomb for parallel LiDAR system. For realizing the parallel wavelengths emission consistent with Rayleigh criterion, the wide waveguide beyond single mode region combined with the bound state in the continuum (BIC) effect is harnessed to obtain an ultra-long optical grating antenna array.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Agricultural Biology, 1177 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA.
This report presents two phased chromosome-scale genome assemblies of allotetraploid Salsola tragus (2n=4x=36) and fills the current genomics resource gap for this species. Flow cytometry estimated 1C genome size was 1.319 Gbp.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China.
In this paper, we present a method based on the conjugate image principle and micro-nano optics to detect tilt aberrations of a phased fiber laser array system. A co-aperture optics system was adapted to detect the tilt aberrations of a seven-element phased fiber laser array system simultaneously. A Kepler telescope was designed to construct the conjugate relation between the exit pupil of a fiber optic laser array system and a microlens array and also to match the size of the seven beams and the microlens array.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Chemistry, Washington State University, Pullman, Washington 99164, United States.
Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet.
View Article and Find Full Text PDFUltrasonics
December 2024
School of Mechatronic & Automation Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, China. Electronic address:
Fiber reinforced polymer composites (FRPs) are essential for various industrial fields, but wrinkles inside will greatly reduce their mechanical properties. Full-matrix capture (FMC) is a popular data structure for ultrasonic phased array imaging in composites. However, such structure may lead to data redundancy and noise interference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!