Graphene metasurfaces based on surface plasmon resonance can greatly enhance the interaction between light and matter at the nanoscale. At present, the resonance of graphene metasurfaces is widely used to enhance the absorption of atomic layer graphene, but little work has focused on the light field trapping capabilities it brings. In this paper, we numerically study the light trapping and manipulation of an asymmetric graphene metasurface. The designed device supports two resonant modes, and the multipole decomposition confirms that the electric dipole response dominates them. The calculated average electric field enhancement factor (EF) can reach 1206 and 1779, respectively. The near-field distribution indicates that the electric field is mainly localized in the graphene nanodisks. When the Fermi energy changes, the intensity and peak position of EF can be effectively regulated. In addition, when the polarization of the incident light is adjusted, the light field capture of the two modes is independently regulated. These results reveal that the graphene metasurface has significant light field capture and regulation ability, which provides a new idea for the realization of active regulation of high-performance low-dimensional optical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.475861DOI Listing

Publication Analysis

Top Keywords

graphene metasurface
12
light field
12
light trapping
8
graphene metasurfaces
8
electric field
8
field capture
8
graphene
7
light
6
field
5
tunable light
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!