Substitution of monocrystalline or polycrystalline silicon as active materials in photovoltaics with highly efficient perovskite materials is quite common. Although perovskite materials offer better flexibility, are cost-effective, and have higher conversion efficiency, they still require structural modifications for better performance. This study quantitatively investigates how mesoporous top surfaces improve the performance of methylammonium lead iodide ( ) perovskite solar cells. In fact, both the diameter and the depth of the pores have been tuned to achieve better performance. The performance is further optimized by replacing mesoporous active material with planar active material coated with mesoporous indium tin oxide (ITO). We have demonstrated that the proposed structure achieves the maximum conversion efficiency () of 27.43% with an open-circuit voltage ( ) of 1.07 V and a short circuit current density ( ) of 29.09 / , with a fill factor (FF) of 88.10%.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.471396DOI Listing

Publication Analysis

Top Keywords

perovskite solar
8
perovskite materials
8
conversion efficiency
8
better performance
8
active material
8
performance
5
application porosities
4
porosities transparent
4
transparent electrode
4
electrode layer
4

Similar Publications

It is necessary to overcome the relatively low conductivity of ionic liquids (ILs) caused by steric hindrance effects to improve their ability to passivate defects and inhibit ion migration to boost the photovoltaic performance of perovskite solar cells (PSCs). Herein, we designed and prepared a kind of low-concentration 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF) diluted with propylene carbonate (PC) via an ultrasonic technique (PC/IL). The decrease in the decomposition temperature related to the IL part and the increase in the sublimation temperature related to the PC part facilitated the use of PC/IL to effectively delay the crystallization process and passivate the defects in multiple ways to obtain high-quality perovskite films.

View Article and Find Full Text PDF

Light Absorption-Enhanced Ultra-Thin Perovskite Solar Cell Based on Cylindrical MAPbI Microstructure.

Materials (Basel)

December 2024

School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan 432000, China.

In order to promote power conversion efficiency and reduce energy loss, we propose a perovskite solar cell based on cylindrical MAPbI3 microstructure composed of a MAPbI perovskite layer and a hole transport layer (HTL) composed of PEDOT:PSS. According to the charge transport theory, which effectually increases the contact area of the HTL, promoting the electronic transmission capability, the local field enhancement and scattering effects of the surface plasmon polaritons help to couple the incident light to the solar cell, which can increase the absorption of light in the active layer of the solar cell and improve its light absorption efficiency (LAE). based on simulation results, a cylindrical microstructure of the perovskite layer increases the contact area of the hole transport layer, which could improve light absorption, quantum efficiency (QE), short-circuit current density (J), and electric power compared with the perovskite layer of other structures.

View Article and Find Full Text PDF

Mixed Pt-Ni Halide Perovskites for Photovoltaic Application.

Materials (Basel)

December 2024

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

CsPtI is a promising photoabsorber with a direct bandgap of 1.4 eV and a high carrier lifetime; however, the cost of Pt inhibits its commercial viability. Here, we performed a cost analysis and experimentally explored the effect of replacing Pt with earth-abundant Ni in solution-processed Cs(PtNi)(I,Cl) thin films on the properties and stability of the perovskite material.

View Article and Find Full Text PDF

Enhancing Photovoltaically Preferred Orientation in Wide-Bandgap Perovskite for Efficient All-Perovskite Tandem Solar Cells.

Adv Mater

January 2025

School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China.

Wide-bandgap perovskite solar cells (WBG PSCs) have promising applications in tandem devices yet suffer from low open-circuit voltages (Vs) and less stability. To address these issues, the study introduces multifunctional nicotinamide derivatives into WBG PSCs, leveraging the regulation on photovoltaically preferential orientation and optoelectronic properties via diverse functional groups, e.g.

View Article and Find Full Text PDF

Effective modifications for the buried interface between self-assembled monolayers (SAMs) and perovskites are vital for the development of efficient, stable inverted perovskite solar cells (PSCs) and their tandem photovoltaics. Herein, an ionic-liquid-SAM hybrid strategy is developed to synergistically optimize the uniformity of SAMs and the crystallization of perovskites above. Specifically, an ionic liquid of 1-butyl-3-methyl-1H-imidazol-3-iumbis((trifluoromethyl)sulfonyl)amide (BMIMTFSI) is incorporated into the SAM solution, enabling reduced surface roughness, improved wettability, and a more evenly distributed surface potential of the SAM film.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!