Coherent beam combining (CBC) of a fiber laser can scale the output power while maintaining high beam quality. However, phase detection and control remain a challenge for a high-power CBC system with a massive laser array. This paper provides a novel, to the best of our knowledge, cascaded phase-control technique based on internal phase detection and control, called the cascaded internal phase-control technique. The principle of the technique was introduced in detail, and the numerical simulations were carried out based on the stochastic parallel gradient descent (SPGD) algorithm. The results indicated that the cascaded internal phase-control technique was compatible with the massive laser array. Compared with the traditional CBC based on the SPGD algorithm, the control bandwidth could be improved effectively about seven times (120 steps) than the traditional SPGD algorithm (830 steps). Furthermore, the average root mean square of residual phase error was decreased to 0.03 rad (∼/209) with a laser array of 259 channels (7∗37), which was 0.36 rad (∼/17) in the traditional SPGD algorithm. In addition, the element expanding capacity was analyzed. Since there is no large-aperture optical device in the phase-detection system, this technique has the advantage of freely designing the caliber of the laser emitting system. This paper could offer a reference for the high-power massive laser array system design and phase control.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.467914DOI Listing

Publication Analysis

Top Keywords

laser array
20
spgd algorithm
16
cascaded internal
12
massive laser
12
phase-control technique
12
system design
8
fiber laser
8
internal phase
8
phase control
8
phase detection
8

Similar Publications

Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array.

Light Sci Appl

January 2025

State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.

Colloidal quantum dots (CQDs) are attractive gain media due to their wavelength-tunability and low optical gain threshold. Consequently, CQD lasers, especially the surface-emitting ones, are promising candidates for display, sensing and communication. However, it remains challenging to achieve a low-threshold surface-emitting CQD laser array with high stability and integration density.

View Article and Find Full Text PDF

Background: Delayed reactions to hyaluronic acid (HA) fillers have been reported following various immunologic and infectious triggers.

Aim: Herein, we describe cases of delayed immunologic reactions (DIRs) following HA-soft tissue augmentation fillers precipitated by triggers not previously described in the literature.  Patients: Case 1 describes a 57-year-old female with DIR to HA-filler following a motor vehicle accident in the marionette lines and nasolabial folds.

View Article and Find Full Text PDF

g-CN modified flower-like CuCoO array on nickel foam without binder for high-performance supercapacitors.

RSC Adv

January 2025

School of Physics and Electronic Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan 030006 China

This study investigates the impact of integrating g-CN into CuCoO electrodes on electrochemical performance working as binder-free electrodes. Flower-like CuCoO nanostructures on nickel foam are decorated with few-layer g-CN using a secondary hydrothermal process. The hierarchical g-CN/CuCoO nanoflower electrode demonstrates a specific capacity of 247.

View Article and Find Full Text PDF

A 3D millifluidic model of a dermal perivascular microenvironment on a chip.

Lab Chip

January 2025

Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy.

The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies.

View Article and Find Full Text PDF

A flexible catheter-based sensor array for upper airway soft tissues pressure monitoring.

Nat Commun

January 2025

The Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, PR China.

Obstructive sleep apnea is a globally prevalent concern with significant health impacts, especially when coupled with comorbidities. Accurate detection and localization of airway obstructions are crucial for effective diagnosis and treatment, which remains a challenge for traditional sleep monitoring methods. Here, we report a catheter-based flexible pressure sensor array that continuously monitors soft tissue pressure in the upper airway and facilitates at the millimeter level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!