Correction for 'Aggregation or phase separation can be induced in highly charged proteins by small charged biomolecules' by Minchae Kang , , 2022, , 3313-3317, https://doi.org/10.1039/D2SM00384H.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm90171dDOI Listing

Publication Analysis

Top Keywords

phase separation
8
separation induced
8
induced highly
8
highly charged
8
charged proteins
8
proteins small
8
small charged
8
correction aggregation
4
aggregation phase
4
charged
4

Similar Publications

Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX.

View Article and Find Full Text PDF

The two action mechanisms of plant cryptochromes.

Trends Plant Sci

January 2025

Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Plant cryptochromes (CRYs) are photolyase-like blue-light receptors that contain a flavin adenine dinucleotide (FAD) chromophore. In plants grown in darkness, CRYs are present as monomers. Photoexcited CRYs oligomerize to form homo-tetramers.

View Article and Find Full Text PDF

Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy.

J Chromatogr A

January 2025

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:

Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.

View Article and Find Full Text PDF

Adsorption and Separation by Flexible MOFs.

Adv Mater

January 2025

Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany.

Flexible metal-organic frameworks (MOFs) offer unique opportunities due to their dynamic structural adaptability. This review explores the impact of flexibility on gas adsorption, highlighting key concepts for gas storage and separation. Specific examples demonstrate the principal effectiveness of flexible frameworks in enhancing gas uptake and working capacity.

View Article and Find Full Text PDF

Female-biased nectar production is associated with the Darwin's inflorescence syndrome.

Plant Biol (Stuttg)

January 2025

Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), San Carlos de Bariloche, Río Negro, Argentina.

Plant reproduction is influenced not only by individual flower characteristics but also by the arrangement of flowers within inflorescences. In bee-pollinated plants with protandrous flowers in vertical acropetal inflorescences - where male fertile flower structures mature before female ones and basal flowers open first (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!