Developing automated platforms for point-of-need testing is a crucial global demand. Digital microfluidics is a promising solution for expanding integrated testing devices featuring ultimate control over the chemical and biological reactions in micro/nanoliter droplets. In this study, robotic digital microfluidics (RDMF) is introduced for the mechanical manipulation of the droplets precisely and inexpensively. A controllable and multifunctional arm equipped with several actuators is responsible for dispensing and manipulating droplets on a disposable superhydrophobic cartridge. The platform has been demonstrated with diverse functions, including droplet dispensing, transport, mixing, aliquoting, and splitting. Moreover, incorporating magnetic and heating modules into the system can realize particle manipulation and droplet heating. The liquid handling operations are investigated from both experimental and modeling perspectives. Handling a wide range of droplet sizes without needing high-voltage electric sources, integrability with different detection techniques, and ease of manufacturing are the main advantages of the RDMF platform compared to conventional digital microfluidic systems. The availability of a complete fluidic toolbox and multiple detection choices make RDMF promising for droplet-based total analysis technology. The system was applied for a urinalysis test to show its versatility in handling complex biochemical assays. The results entirely matched those obtained based on laboratory gold standard techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2lc00849a | DOI Listing |
Int J Mol Sci
January 2025
Department Hamm 1, Hamm-Lippstadt University of Applied Science, 59063 Hamm, Germany.
An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics.
View Article and Find Full Text PDFAnal Chem
January 2025
CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
Droplet microfluidics is a powerful method for digital droplet polymerase chain reaction (ddPCR) applications. However, precise droplet control, bulky peripherals, and multistep operation usually required in droplet detection process hinder the broad application of ddPCR. Here, a contracted channel droplet reinjection chip is presented, where droplets can be self-separated and detected one by one at intervals.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, PR China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, PR China. Electronic address:
Background: Entamoeba histolytica is a parasite that could cause severe amebiasis, an extremely contagious parasitic disease with critical clinical symptoms. Timely diagnosis and treatment of E. histolytica are crucial for preventing complications and fatalities.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.
Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes.
View Article and Find Full Text PDFFront Parasitol
August 2024
Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya, Sri Lanka.
Dirofilariasis, caused by the nematode spp., poses significant challenges in diagnosis due to its diverse clinical manifestations and complex life cycle. This comprehensive literature review focuses on the evolution of diagnostic methodologies, spanning from traditional morphological analyses to modern emerging techniques in the context of dirofilariasis diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!