The CaSR/TRPV4 coupling mediates pro-inflammatory macrophage function.

Acta Physiol (Oxf)

Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China.

Published: April 2023

AI Article Synopsis

  • The study examines the interaction between calcium-sensing receptor (CaSR) and TRPV4 channels in macrophages and how they affect macrophage polarization through calcium signaling.
  • Researchers used peritoneal macrophages from wild-type and TRPV4 knockout mice to analyze the role of these channels and how they respond to lipopolysaccharide (LPS) treatment, measuring various polarization markers.
  • Results indicate that CaSR and TRPV4 channels are coupled and play a significant role in promoting M1 macrophage polarization, suggesting potential therapeutic implications for immune-related diseases.

Article Abstract

Aim: Although calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 4 (TRPV4) channels are functionally expressed on macrophages, it is unclear if they work coordinately to mediate macrophage function. The present study investigates whether CaSR couples to TRPV4 channels and mediates macrophage polarization via Ca signaling.

Methods: The role of CaSR/TRPV4/Ca signaling was assessed in lipopolysaccharide (LPS)-treated peritoneal macrophages (PMs) from wild-type (WT) and TRPV4 knockout (TRPV4 KO) mice. The expression and function of CaSR and TRPV4 in PMs were analyzed by immunofluorescence and digital Ca imaging. The correlation factors of M1 polarization, CCR7, IL-1β, and TNFα were detected using q-PCR, western blot, and ELISA.

Results: We found that PMs expressed CaSR and TRPV4, and CaSR activation-induced marked Ca signaling predominately through extracellular Ca entry, which was inhibited by selective pharmacological blockers of CaSR and TRPV4 channels. The CaSR activation-induced Ca signaling was significantly attenuated in PMs from TRPV4 KO mice compared to those from WT mice. Moreover, the CaSR activation-induced Ca entry via TRPV4 channels was inhibited by blocking phospholipases A2 (PLA2)/cytochromeP450 (CYP450) and phospholipase C (PLC)/Protein kinase C (PKC) pathways. Finally, CaSR activation promoted the expression and release of M1-associated cytokines IL-1β and TNFɑ, which were attenuated in PMs from TRPV4 KO mice.

Conclusion: We reveal a novel coupling of the CaSR and TRPV4 channels via PLA2/CYP450 and PLC/PKC pathways, promoting a Ca -dependent M1 macrophage polarization. Modulation of this coupling and downstream pathways may become a potential strategy for the prevention/treatment of immune-related disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/apha.13926DOI Listing

Publication Analysis

Top Keywords

trpv4 channels
20
casr trpv4
16
casr activation-induced
12
trpv4
11
casr
10
macrophage function
8
macrophage polarization
8
trpv4 mice
8
attenuated pms
8
pms trpv4
8

Similar Publications

Transient receptor potential vanilloid 4 gene-deficiency attenuates the inhibitory effect of 5,6-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid on vascular permeability in mice.

J Pharmacol Sci

January 2025

Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan. Electronic address:

We investigated whether an anti-inflammatory lipid metabolite named 5,6-DiHETE reduces vascular permeability by inhibiting TRPV4 channels in vivo. In wild-type (WT) mice, histamine-induced dye extravasation was reduced by pre-administration of 5,6-DiHETE. In TRPV4-deficient mice, extravasation and histamine-induced edema were already reduced, and 5,6-DiHETE had no additional effect.

View Article and Find Full Text PDF

Ion Channels as Potential Drug Targets in Dry Eye Disease and Their Clinical Relevance: A Review.

Cells

December 2024

Center for Research on Harmful Effects of Biological and Chemical Hazards, Departments of Genetics, Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia.

Dry eye disease (DED) is a common multifactorial disorder characterized by a deficiency in the quality and/or quantity of tear fluid. Tear hyperosmolarity, the dysfunction of ion channel proteins, and eye inflammation are primarily responsible for the development and progression of DED. Alterations in the structure and/or function of ion channel receptors (transient receptor potential ankyrin 1 (TRPA1), transient receptor potential melastatin 8 (TRPM8), transient receptor potential vanilloid 1 and 4 (TRPV1 and TRPV4)), and consequent hyperosmolarity of the tears represent the initial step in the development and progression of DED.

View Article and Find Full Text PDF

Neuropsin, TRPV4 and intracellular calcium mediate intrinsic photosensitivity in corneal epithelial cells.

Ocul Surf

December 2024

Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA. Electronic address:

Purpose: To investigate intrinsic phototransduction in the corneal epithelium and its role in intracellular and inflammatory signaling.

Methods: Optical imaging in isolated corneal epithelial cells (CECs) and debrided epithelia was combined with molecular, biochemical, pharmacological assays and gene deletion studies to track UVB-induced calcium signaling and release of cytokines, chemokines and matrix remodeling enzymes. Results from wild type mouse CECs were compared to data obtained from Opn5 and Trpv4 cells.

View Article and Find Full Text PDF

Objective: To investigate whether cardiac mast cells (MCs) participate in pressure overload-induced myocardial hypertrophy through the regulation of transient receptor potential vanilloid 4 (TRPV4).

Methods: Pressure overload-induced myocardial hypertrophy was induced via abdominal aortic constriction (AAC). Myocardial hypertrophy was evaluated by measuring the heart weight index (HW/BW), lung weight index (LW/BW), ratio of heart weight to tibia length (HW/TL), ratio of lung weight to tibia length (LW/TL), and cross-sectional area of myocardial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: