A scalable, and cost-effective method was employed to prepare self-supported CuSn bimetallic catalyst on carbon paper. The obtained CuSn catalyst demonstrates high faradaic efficiency of CO around or above 90% at a broad potential range from -0.7 to -1.8 V reversible hydrogen electrode, greatly surpassing Cu or Sn counterparts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cc05753k | DOI Listing |
Materials (Basel)
December 2024
Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
J Colloid Interface Sci
January 2025
National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
Electrocatalytic CO reduction reaction (CORR) is a process in which CO is reduced to high-value-added C and C energy sources, particularly ethylene (CH), thereby supporting carbon-neutral recycling with minimal consumption. This makes it a promising technology with significant potential. Nevertheless, the low selectivity for CH remains a significant challenge in practical applications.
View Article and Find Full Text PDFNanoscale Horiz
November 2024
Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
In the electrochemical CO reduction reaction (CORR), Cu alloy electrocatalysts can control the CORR selectivity by modulating the intermediate binding energy. Here, we report the thermodynamic-based Cu-Sn bimetallic phase control in heterogeneous catalysts for selective CO conversion. Starting from the thermodynamic understanding about Cu-Sn bimetallic compounds, we established the specific processing window for Cu-Sn bimetallic phase control.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2023
Institute of Materials Science, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
In this work, the solvothermal solidification method has been used to be prepared as a homogenous CuSn-organic nano-composite (CuSn-OC) to use as a catalyst for alkaline water electrolysis for cost-effective H generation. FT-IR, XRD, and SEM techniques were used to characterize the CuSn-OC which confirmed the formation of CuSn-OC with a terephthalic acid linker as well as Cu-OC and Sn-OC. The electrochemical investigation of CuSn-OC onto a glassy carbon electrode (GCE) was evaluated using the cyclic voltammetry (CV) method in 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2023
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
The electrocatalytic C-N coupling from carbon dioxide and nitrate under ambient conditions is kind of sustainable and promising alternative method for urea synthesis. To date, the influence of catalyst surface properties on molecular adsorption configuration and electrocatalytic urea synthesis activity is unclear. In this work, we proposed that the urea synthesis activity is closely linked with the localized surface charge on bimetallic electrocatalysts, it is found that a negatively charged surface induces C-bound path and boosts urea synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!