A novel nanocomposite is synthesized by covalently modifying reduced graphene oxide (rGO) with FeO@SiO nanoparticles. FeO was synthesized using a co-precipitation method, and SiO was then coated onto the FeO a sol-gel method. Graphene oxide was synthesized using the Hummers' method. Furthermore, a hydrothermal method was applied to create the FeO@SiO-GO composite, and a simple reduction was used to obtain three-dimensional (3D) FeO@SiO-rGO core-shell spheres. XRD, FTIR, FE-SEM, VSM, BET, TGA, and Raman analyses were used to characterize the prepared nanocomposites. X-Ray diffraction (XRD) and Raman spectra reveal that the nanostructures consist of highly crystallized cubic FeO, amorphous SiO, and rGO sheets stacked in a disordered fashion. Field emission scanning electron microscopy (FE-SEM) characterization indicates that the form of the FeO@SiO core-shell structures is spherical, with an average size of about 25 nm. Magnetic hysteresis loops reveal the super-paramagnetic behavior of the samples at room temperature. All of the results obtained confirm the synthesis of high-quality nanocomposites, which can be a good candidate for use as a catalyst in multi-component reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp05354c | DOI Listing |
RSC Adv
January 2025
Department of Life Science and Agriculture, Zhoukou Normal University Zhoukou Henan 466001 China
This study reports a green, multi-component synthesis of 2-aminoimidazole-linked quinoxaline Schiff bases using a novel superparamagnetic acid catalyst. The catalyst consists of sulfo-anthranilic acid (SAA) immobilized on MnCoFeO@alginate magnetic nanorods (MNRs), achieving high SAA loading (1.8 mmol g) and product yields (91-97%).
View Article and Find Full Text PDFCurr Org Synth
January 2025
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran.
Carbodiimides (R-N=C=N-R) are well-known intermediates for the preparation of a variety of N-containing compounds, including heterocycles and amide linkages. Be-cause of their high reactivity and easy availability, carbodiimides have been broadly used as building blocks in the synthesis of structurally complex and diverse heterocyclic com-pounds in multi-component reactions (MCRs). Recent advances in diversity-oriented syn-thesis with carbodiimide-based MCRs are discussed in this minireview and are classified into different sections based on the key transformation involved in the reactions, such as heteroannulation and nucleophilic addition reactions which containing metal-catalyzed re-actions, multi-component reactions, and catalyst-free reactions subsections.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Laboratoire de Chimie Organique (LR17ES08), Faculté des Sciences de Sfax, University of Sfax, Route de Soukra Km 3.5, BP 1171, 3000, Sfax, Tunisia.
Aim And Objective: It is well established that 4H-pyran derivatives hold a significant position in synthetic organic chemistry due to their diverse biological and pharmacological properties. This work aims to introduce a novel synthetic pathway for highly functionalized 4H-pyran derivatives, achieved through a 1,4-Michael addition followed by a cascade cyclization. This reaction is catalyzed by LiOH·H2O under ultrasonic irradiation in water, offering an efficient and environmentally friendly approach.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
This research presents an innovative approach for synthesizing 2-amino-4H-chromene derivatives, utilizing 30 mg of NS-doped graphene oxide quantum dots (GOQDs) as a catalyst in a one-pot, three-component reaction conducted in ethanol. The NS-doped GOQDs were synthesized using a cost-effective bottom-up method through the condensation of citric acid (CA) with thiourea and the reaction was carried out at 185 C, resulting in the elimination of water. The catalytic performance of the synthesized NS-doped GOQDs resulted in high product yields, achieving up to 98% for the 2-amino-4H-chromene derivatives from aromatic aldehydes, malononitrile, resorcinol, -naphthol, and dimedone.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
In recent two decades, considerable efforts have been devoted to the room-temperature green syntheses of metal-organic frameworks (MOFs) to reduce energy consumption and increase safety. It could improve some properties (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!