Quantification of metabolites present within exhaled breath is a major challenge for on-line breath analysis. It is also important for gauging the analytical performance, accuracy, reproducibility, reliability, and stability of the measuring technology. Short-chain fatty acids (SCFAs) are of high interest for nutrition and health. Their quantification enables a deep mechanistic understanding of a wide range of biological processes and metabolic pathways, while their high volatility makes them an attractive target for breath analysis. This article reports, for the first time, the development and testing of a modular, dynamic vapor generator for the qualitative and quantitative analysis of volatile SCFAs in the gaseous phase using a secondary electrospray ionization (SESI) source coupled to a high-resolution mass spectrometer. Representative compounds tested included acetic acid, propionic acid, butyric acid, pentanoic acid and hexanoic acid. Gas-phase experiments were performed both in dry and humid (95% relative humidity) conditions from ppt to low ppb concentrations. The results obtained exhibited excellent linearity within the examined concentration range, low limits of detection and quantification down to the lower ppt area. Mixture effects were also investigated and are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ay01778dDOI Listing

Publication Analysis

Top Keywords

analysis volatile
8
short-chain fatty
8
fatty acids
8
phase secondary
8
secondary electrospray
8
electrospray ionization
8
breath analysis
8
acid
5
analysis
4
volatile short-chain
4

Similar Publications

The Chinese proverb "One mountain, one flavor" reflects that raw pu-erh tea (RPT) from different tea-producing mountains (TPMs) possesses distinct flavor profiles. However, limited research has been conducted on the chemical composition underlying distinct flavor profiles. In this study, sensory evaluation and main phytochemical compositions revealed diverse aromas of RPTs from 26 TPMs.

View Article and Find Full Text PDF

To investigate the impact of genetic factors on wine aroma, wines made from 22 clones of five grape varieties ( L.) were used to analyze the volatile compounds by headspace solid phase microextraction gas chromatography mass spectrometer (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results showed that 52 and 49 aroma compounds were identified from 22 clones of wines by two technologies, respectively.

View Article and Find Full Text PDF

The properties, applications, and in vitro bioactivities of turmeric, turmeric essential oil (TEO), and turmeric essential oil by-products (TEO-BP) were evaluated using sensory analysis, gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS), and electronic nose techniques. A total of 62 and 66 volatile organic compounds (VOCs), primarily terpenoids and sesquiterpenoids, were identified by GC-MS and GC-IMS, respectively. Distillation temperature, particularly at 90 °C, significantly influenced the color and organoleptic properties of TEO, with variations in VOC profiles driving these differences.

View Article and Find Full Text PDF

Manganese (Mn) is involved in plant metabolism as an enzyme cofactor. However, the role of Mn in the formation of volatile compounds in grapes has rarely been studied. To address this gap, this study explored the effect of foliar Mn application on the aroma traits of grapes and wine.

View Article and Find Full Text PDF

The smoky scent is the most distinctive feature for Souchong black tea. To reduce the dependence on pinewood in the smoking process of Souchong black tea, it is crucial to find an effective alternative smoking material. Five black tea samples were prepared via using specially designed fuel rods as the smoking material in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!