Herein, for the first time, we report the asymmetric synthesis of an unexpected stereoisomer of spirohexahydroindole a trienamine-catalysed remote olefin / isomerisation/[4 + 2]-cycloaddition reaction. The reaction afforded a vast library of aesthetically pleasing spirooxindole hexahydroindole scaffolds with exceptional enantio- and diastereo-selectivities (up to 95% yield, 99% ee and >99 : 1 dr). In addition, we demonstrated the synthetic transformation of enantiomerically pure spirooxindole hexahydroindoles to synthesize alkyl homologated spirooxindole hexahydroindole and fluoro-pyranooctahydroindole moieties with four and seven contiguous stereocenters, respectively, in excellent yield and selectivities. We have also demonstrated the evidence for the proposed pathway through NMR investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2ob02228a | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
Angew Chem Int Ed Engl
December 2024
Tsinghua University, Department of Chemistry, 1 Tsinghua Yuan, 100084, Beijing, CHINA.
Catalytic regio- and enantioselective hydroamination of less activated internal alkenes presents a challenge to synthetic chemists due to their low reactivity and the difficulty in simultaneously controlling regio- and enantioselectivities. Here, we report an iridium-catalyzed enantioselective hydroamination of internal alkenes directed by an amide. The amide group on the alkene effectively directs the catalyst to overcome the low reactivity and control the regioselectivity and the enantiotopic face selection.
View Article and Find Full Text PDFNat Commun
December 2024
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Zhuhai, Zhuhai, 519088, PR China.
Angew Chem Int Ed Engl
December 2024
Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Introducing polar groups into non-polar polyolefins can significantly enhance the important properties of materials. However, producing polyolefin backbones consisting of polar blocks remains elusive, due to the substantial difference of reactivity ratios between polar and non-polar olefin monomers in radical polymerization or the poisoning of transition-metal catalysts by polar groups in coordination polymerization. Herein we present a practical way for the preparation of polyethylene-based polymers with distinct polar groups by radical polymerization of α-olefins.
View Article and Find Full Text PDFJACS Au
November 2024
Department of Organic Chemistry, Indian Institute of Science, Bangalore560012, India.
Compared to the widely explored enol silanes, the applicability of their extended variants especially as bisvinylogous nucleophiles in enantioselective catalysis has been sparse. Herein, we describe the first enantioselective vinylogous and bisvinylogous allenylic substitution using silyl dienol and trienol ethers, respectively, as a nucleophile. With racemic allenylic alcohols as the electrophile, these enantioconvergent reactions are cooperatively catalyzed by an Ir(I)/(phosphoramidite,olefin) complex and Lewis acidic La(OTf) and display remarkable regio- and diastereoselectivity in most cases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!