Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is an urgent unmet medical need to develop therapeutic options for the ~50% of depression patients suffering from treatment-resistant depression, which is difficult to treat with existing psycho- and pharmaco-therapeutic options. Classical psychedelics, such as the 5HT agonists, have re-emerged as a treatment paradigm for depression. Recent clinical trials highlight the potential effectiveness of 5HT agonists to improve mood and psychotherapeutic growth in treatment-resistant depression patients, even in those who have failed a median of four previous medications in their lifetime. Moreover, microdosing could be a promising way to achieve long-term alleviation of depression symptoms without a hallucinogenic experience. However, there are a gamut of practical barriers that stymie further investigation of microdosing 5HT agonists, including: low compliance with the complicated dosing regimen, high risk of diversion of controlled substances, and difficulty and cost administering the long-term treatment regimens in controlled settings. Here, we developed a drug delivery system composed of multilayered cellulose acetate phthalate (CAP)/Pluronic F-127 (P) films for the encapsulation and interval delivery of 5HT agonists from a fully biodegradable and biocompatible implant. CAPP film composition, thickness, and layering strategies were optimized, and we demonstrated three distinct pulses from the multilayered CAPP films in vitro. Additionally, the pharmacokinetics and biodistribution of the 5HT agonist 2,5-Dimethoxy-4-iodoamphetamine (DOI) were quantified following the subcutaneous implantation of DOI-loaded single and multilayered CAPP films. Our results demonstrate, for the first time, the interval delivery of psychedelics from an implantable drug delivery system and open the door to future studies into the therapeutic potential of psychedelic delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101876 | PMC |
http://dx.doi.org/10.1002/jbm.a.37497 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!