The sorghum-sudangrass hybrid is a vital gramineous herbage.The F2 population was obtained to clarify genetic regularities among the traits of sorghum-sudangrass hybrids by bagging and selfing in the F1 generation using 'scattered ear sorghum' and 'red hull sudangrass.' This hybrid combines the characteristics of the strong resistance of parents, high yield, and good palatability and has clear heterosis. A thorough understanding of the genetic mechanisms of yield traits in sorghum-sudangrass hybrids is essential in improving their yield. Therefore, we conducted quantitative trait locus (QTL) mapping for plant height, stem diameter, tiller number, leaf number, leaf length, leaf width, and fresh weight of each plant in three different environments, using a high-density genetic linkage map based on single nucleotide polymorphism markers previously constructed by our team. A total of 55 QTLs were detected, uniformly distributed over the 10 linkage groups (LGs), with logarithm of odds values ranging between 2.5 and 7.1, which could explain the 4.9-52.44% phenotypic variation. Furthermore, 17 yield-related relatively high-frequency QTL (RHF-QTL) loci were repeatedly detected in at least two environments, with an explanatory phenotypic variation of 4.9-30.97%. No RHF-QTLs were associated with the tiller number. The genes within the confidence interval of RHF-QTL were annotated, and seven candidate genes related to yield traits were screened. Three QTL sites overlapping or adjacent to previous studies were detected by comparative analysis. We also found that QTL was enriched and that qLL-10-1 and qFW-10-4 were located at the same location of 25.81 cM on LG10. The results of this study provide a foundation for QTL fine mapping, candidate gene cloning, and molecular marker-assisted breeding of sorghum-sudangrass hybrids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9808045 | PMC |
http://dx.doi.org/10.3389/fpls.2022.1098605 | DOI Listing |
Sci Rep
January 2025
U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
Thermoinhibition, the suppression of seed germination by high temperatures, is an adaptive trait that ensures successful seedling establishment in natural environments. While beneficial for wild plants, thermoinhibition can adversely affect crop yields due to uneven and reduced germination rates, particularly in the face of climate change. To understand the genetic basis of thermoinhibition, we conducted a comprehensive genetic analysis of a diverse panel of Lactuca spp.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China. Electronic address:
Plant diversity is fundamental to maintaining grassland ecosystem function. Rangeland managers use fencing as a strategy to enhance plant diversity in degraded grasslands. However, the effects of this natural management approach on grasslands across a wide range of environmental gradients and its spatial pattern remain unclear.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
The phytotoxic nature of Ozone (O) has been well documented in a number of scientific literatures during the last few decades. Although there are sufficient studies related to O impact assessment studies on crop plants and tree species, studies pertaining to O effects on medicinal plants are comparatively sparse. During the recent years, the mitigation strategies for management of O stress in plants have also assumed paramount significance.
View Article and Find Full Text PDFPLoS One
January 2025
Polish Academy of Sciences, Institute of Plant Genetics, Poznan, Poland.
The increasing cultivation of perennial C4 grass known as Miscanthus spp. for biomass production holds promise as a sustainable source of renewable energy. Unlike the sterile triploid hybrid of M.
View Article and Find Full Text PDFFunct Plant Biol
January 2025
Krishi Vigyan Kendra, Siwan, Dr. RPCAU, Pusa, Bihar, India.
Detrimental effects of terminal heat stress could be mitigated by exogenous application of synthetic compounds by preserving cell membrane integrity and protecting against oxidative damage. A field experiment was conducted to test the application of seven synthetic compounds on wheat growth traits: (1) thiourea (20 mM and 40mM); (2) potassium nitrate (1% and 2%); (3) sodium nitroprusside (400 μg mL-1 and 800μg mL-1 ); (4) dithiothreitol (25 ppm and 50ppm); (5) salicylic acid (100 ppm and 200ppm); (6) thioglycolic acid (200 ppm and 500ppm); and (7) putrescine (4 mM and 6mM). These compounds were applied at the anthesis and grain-filling stages to enhance physio-biochemical traits and yield attributes of wheat (Triticum aestivum ) cvs GW-11 and GW-496 under terminal heat stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!