Mesoporous metal oxide films composed of nanocrystal assemblies with an aligned crystallographic orientation are key nanostructures for efficient interfacial reactions; however, the development of a simple and versatile method for their formation on substrates still constitutes a challenge. Here we report the template-free centimetre-scale formation of novel cobalt oxide films of CoO and CoO with a [111]-oriented mesoporous structure starting from stacking cobalt hydroxide continuous films. The cobalt hydroxide precursor is formed electrochemically on conductive substrates from a Co(NO) aqueous solution at room temperature. A thorough characterization by means of scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis-NIR spectroscopy, IR spectroscopy and Raman spectroscopy analyses reveals that the precursor film is an α-type layered cobalt hydroxide salt (α-Co-LHS) containing interlayer nitrate and hydrated water, , α-Co(OH) (NO) ·HO, with a [001]-oriented stacking film structure. Heat treatment of the [001]-α-Co-LHS films using different conditions, , under air at 550 °C or under vacuum at 500 °C, results in the selective formation of CoO or CoO mesoporous films, respectively. A plausible explanation for the observed centimetre-scale topotactic-like transformation from α-Co-LHS[001] to CoO[111] or CoO[111] is given according to the atomic framework similarity between the hydroxide precursor and the final oxides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9765712PMC
http://dx.doi.org/10.1039/d2na00594hDOI Listing

Publication Analysis

Top Keywords

coo coo
12
cobalt hydroxide
12
hydroxide salt
8
continuous films
8
topotactic-like transformation
8
mesoporous films
8
films coo
8
coo mesoporous
8
oxide films
8
hydroxide precursor
8

Similar Publications

Antibiotics are emerging environmental contaminants posing critical health risks due to their tendency to concentrate in living things and eventually infiltrate the human body. Sulfamethoxazole (SMZ) is among the commonly detected antibiotics in wastewater requiring effective removal approach. A sustainable, thermally stable and easily separable magnetic sporopollenin-cellulose triacetate (Msp-CTA) was developed via a simple step synthesis for eliminating SMZ from aqueous solution.

View Article and Find Full Text PDF

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

Peptide-Ca chelates are innovative calcium supplements. possesses nutritional advantages for preparing calcium-binding peptides (CBPs), although there are limited studies on this subject. Therefore, this paper investigated the optimal condition for preparing CBPs and peptide-calcium chelates (LP-Ca), along with analyzing their microstructure, calcium-binding mechanisms, stability, and calcium transporting efficacy.

View Article and Find Full Text PDF

Luminescent Metal-Organic Framework with Outstanding "Turn-On" Hg Sensing Ability First Constructed by an AIE Ligand.

Inorg Chem

January 2025

International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China.

Hg is highly toxic and can cause serious harm to the environment and humans. Thus, it is vital to develop efficient Hg sensors. In this work, a LMOF-based (LMOF = luminescent metal-organic framework) "turn-on" Hg sensor () is first developed by an aggregation-induced emission (AIE) functional ligand.

View Article and Find Full Text PDF

Pollution characteristics and potential sources of Peroxyacetyl Nitrate in a petrochemical industrialized City, Northwest China.

Chemosphere

January 2025

Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.

Peroxyacetyl Nitrate (CHC(O)ONO, PAN), a typical secondary product of photochemical reactions, is well known to be a better photochemical indicator due to the only secondary photochemical source in the troposphere. Studies on PAN pollution are sparse in northwest China, resulting in a limited understanding of photochemical pollution in recent years. Herein, the measurement of PAN, O, volatile organic compounds (VOCs), NO, other related species, and meteorological parameters were conducted from May 1 to August 31, 2022, at an urban site in Lanzhou.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!