We report direct imaging of boundary magnetization associated with antiferromagnetic domains in magnetoelectric epitaxial CrO thin films using diamond nitrogen vacancy microscopy. We found a correlation between magnetic domain size and structural grain size which we associate with the domain formation process. We performed field cooling, , cooling from above to below the Néel temperature in the presence of a magnetic field, which resulted in the selection of one of the two otherwise degenerate 180° domains. Lifting of such a degeneracy is achievable with a magnetic field alone due to the Zeeman energy of a weak parasitic magnetic moment in CrO films that originates from defects and the imbalance of the boundary magnetization of opposing interfaces. This boundary magnetization couples to the antiferromagnetic order parameter enabling selection of its orientation. Nanostructuring the CrO film with mesa structures revealed reversible edge magnetic states with the direction of magnetic field during field cooling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764058PMC
http://dx.doi.org/10.1039/d2ra06440eDOI Listing

Publication Analysis

Top Keywords

boundary magnetization
12
magnetic field
12
antiferromagnetic domains
8
field cooling
8
magnetic
7
field
5
nanoscale imaging
4
imaging antiferromagnetic
4
domains epitaxial
4
epitaxial films
4

Similar Publications

Magnetic resonance electrical properties tomography can extract the electrical properties of in-vivo tissue. To estimate tissue electrical properties, various reconstruction algorithms have been proposed. However, physics-based reconstructions are prone to various artifacts such as noise amplification and boundary artifact.

View Article and Find Full Text PDF

The Multiple Effects of RE Element Addition in Non-Oriented Silicon Steel.

Materials (Basel)

January 2025

Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

High-grade non-oriented silicon steel with high magnetic induction and low iron loss produced with low carbon emissions is crucial for the development of new energy and energy-saving motors. In this paper, the trace mixed rare earth (RE) elements exhibit a great potential to enhance magnetic properties in a lower carbon emission process by multiple effects on microstructure, texture, and inclusion in non-oriented silicon steel. With the trace-doped RE elements (0.

View Article and Find Full Text PDF

The current study uses the Chernobyl disaster optimizer (CDO), a new metaheuristic optimizer, to identify the seven unknown parameters of solid oxide fuel cells (SOFCs). The procedures of the CDO is based on physical behavior of the elaborated radiations from the well-known Chernobyl disaster according to their mass, speed, frequency, and degree of ionization. The sum of square errors (SMSE) among the estimated and the real measured output voltage datasets of SOFCs is minimized employing the CDO.

View Article and Find Full Text PDF

Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD.

View Article and Find Full Text PDF

The early and precise identification of a brain tumour is imperative for enhancing a patient's life expectancy; this can be facilitated by quick and efficient tumour segmentation in medical imaging. Automatic brain tumour segmentation tools in computer vision have integrated powerful deep learning architectures to enable accurate tumour boundary delineation. Our study aims to demonstrate improved segmentation accuracy and higher statistical stability, using datasets obtained from diverse imaging acquisition parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!