Modeling the Impact of the Variation in Peripheral Nerve Anatomy on Stimulation.

J Pain Res

Oneirix Engineering Laboratories Pvt. Ltd., Pune, MH, India.

Published: December 2022

Introduction: The peripheral nervous system has a complex anatomical structure. Stimulation of nerve fibers in the peripheral nervous system depends on the fiber diameter and myelination as well as its location within the nerve, packing fraction and fascicle distribution within the nerve bundle. This paper analyzes the impact of the variation in peripheral nervous system anatomy and the distance of the stimulating electrodes on the probability of generating an action potential.

Methods: A mathematical model for effective fascicle conductivity has been developed to capture the variation in the packing fraction and fiber diameter. A linear activating function is utilized to analyze the impact of this effective conductivity and fascicle distribution as an indicator of generating an action potential.

Results: Finite element simulations are performed for the nerve-electrode configuration to evaluate the electric field. The simulation results are used to analyze the activating function for different packing fractions and type of nerve fibers. The effect of electrode distance on activating function and the total current through a nerve bundle has also been studied.

Discussion: The simulation results indicate that the peripheral nerve anatomy and electrode distance have a significant effect on the action potential generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809380PMC
http://dx.doi.org/10.2147/JPR.S380546DOI Listing

Publication Analysis

Top Keywords

peripheral nervous
12
nervous system
12
activating function
12
impact variation
8
variation peripheral
8
peripheral nerve
8
nerve anatomy
8
nerve fibers
8
fiber diameter
8
packing fraction
8

Similar Publications

Neuropsychiatric manifestations in systemic lupus erythematosus and Sjogren's disease.

Autoimmun Rev

January 2025

Department of Orthopedics, Rheumatology and Traumatology-School of Medical Sciences, University of Campinas, Brazil; Autoimmunity Lab, School of Medical Sciences, University of Campinas, Brazil. Electronic address:

Introduction: Autoimmune diseases often present in a systemic manner, affecting various organs and tissues. Involvement of the central and peripheral nervous system is not uncommon in these conditions and is associated with high morbidity and mortality. Therefore, early recognition of the neuropsychiatric manifestations associated with rheumatologic diseases is essential for the introduction of appropriate therapies with the objective of providing a better quality of life for individuals.

View Article and Find Full Text PDF

BoNT/Action beyond Neurons.

Toxicon

January 2025

National Council of Research (CNR), Institute of Biochemistry and Cell Biology, 00015 Monterotondo (RM), Italy.

Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.

View Article and Find Full Text PDF

Engineered extracellular vesicles for TGF-β encapsulation as a therapeutic strategy against LPS-induced systemic inflammation.

Int Immunopharmacol

January 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:

Inflammation underlies a wide variety of physiological and pathological processes, the Lipopolysaccharide (LPS)-induced inflammation model is widely recognized as a classical inflammatory paradigm, while Transforming growth factor-β (TGF-β) serves as a potent immunosuppressant capable of inhibiting immune responses and mitigating inflammation. However, its in vivo instability and the high cost associated with purification have imposed limitations on its clinical application. Therefore, we propose a therapeutic strategy for genetically modifying extracellular vesicles (HEVs) derived from HEK-293 T cells to incorporate TGF-β which holds potential for mitigating LPS-induced inflammation.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!