Effects of styrene monomer on a mouse model of atopic dermatitis.

Immunopharmacol Immunotoxicol

Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan.

Published: December 2023

Styrene monomer (SM) is a basic chemical used as a raw material for polystyrene and unsaturated polyester resins and in the production of synthetic resins, synthetic rubbers, paints, and adhesives. To date, it is unclear whether SM is associated with the aggravation of atopic dermatitis. The aim was to investigate the effects of SM on atopic dermatitis-like skin lesions induced by mite allergen in NC/Nga mice. Male mice were injected intradermally with mite allergen on their right ears. In the presence of an allergen, SM (3.5 or 350 μg/animal/week) was administered by intraperitoneal injection. We evaluated clinical scores, ear thickening, histologic findings, and the protein expressions of cytokines and chemokines. Macroscopic and microscopic examinations demonstrated that exposure to SM at a dose of 3.5 μg caused an exacerbation of atopic dermatitis-like skin lesions related to mite allergen. These changes were consistent with the level of histamine in the ear tissue as an overall trend. In contrast, 350-μg SM did not show significant enhancement effects. These results indicate that SM exacerbated atopic dermatitis-like skin lesions at hundred-fold lower levels than the level that causes no observed adverse effects as determined by histologic changes in rodent livers. SM could be at least partly responsible for the recent increase in atopic dermatitis.Impact statementStyrene monomer (SM) is classified as an International Agency for Research on Cancer group 2B carcinogen and includes neurotoxicity and respiratory disorders. However, the effects of SM as a chemical substance on existing allergic pathophysiology have not been elucidated yet. This study demonstrated that SM exacerbated murine atopic dermatitis-like skin lesions at hundred-fold lower levels than the level that causes no observed adverse effects as determined by histologic changes in rodent livers, which was concomitant with the local level of histamine. These data hasten a need for comprehensive research to clarify the chemical pollutants' effects of doses much lower than NOAEL on vulnerable pathophysiologies such as allergy/atopy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08923973.2023.2165944DOI Listing

Publication Analysis

Top Keywords

atopic dermatitis-like
16
dermatitis-like skin
16
skin lesions
16
mite allergen
12
styrene monomer
8
atopic dermatitis
8
level histamine
8
lesions hundred-fold
8
hundred-fold lower
8
lower levels
8

Similar Publications

Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases. AD pathogenesis is associated with increased oxidative stress, impairment of the skin barrier, and activation of the immune response. Rosmarinic acid (RA), a caffeic acid ester, is known for its anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF
Article Synopsis
  • Basophils are rare immune cells that play vital roles in allergic reactions and defense against parasites, but how they activate and produce inflammation is not well understood, prompting research into RNA-binding proteins like tristetraprolin (TTP).
  • Through various experiments, including RNA sequencing and mRNA stability assays on TTP-deficient mice, the study found that without TTP, basophils produce more inflammatory molecules and have prolonged mRNA stability for these mediators.
  • The absence of TTP leads to increased allergic inflammation in a skin model, suggesting that targeting TTP could be a potential therapeutic approach for managing allergies.
View Article and Find Full Text PDF

GPR55 antagonist CID16020046 suppresses DNCB-induced atopic dermatitis-like symptoms by suppressing Th1/Th2/Th17 populations in mice.

Eur J Pharmacol

December 2024

Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea. Electronic address:

Article Synopsis
  • G protein-coupled receptor 55 (GPR55) is important for immune response and is more active during immune cell activation, but its role in allergic diseases like atopic dermatitis is unclear.
  • In a study using a mouse model, researchers tested the antagonist CID16020046 to see if it could alleviate symptoms of atopic dermatitis caused by repeated exposure to an irritant.
  • Results showed that CID16020046 reduced inflammation, ear thickening, mast cell counts, and levels of certain immune-related proteins (like IgE) in the blood, suggesting GPR55 could be a new target for treating allergic inflammatory diseases.
View Article and Find Full Text PDF

Topical delivery of bioactive compounds from Cortex Dictamni alleviates atopic dermatitis-like lesion by inhibiting the activation of keratinocytes, macrophages, and basophils: Dictamnine versus fraxinellone.

Int Immunopharmacol

December 2024

Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan. Electronic address:

Dictamnine and fraxinellone constitute the primary alkaloid and limonoid components in Cortex Dictamni, respectively. Both compounds exhibit anti-inflammatory properties. This study aims to assess the ability of dictamnine and fraxinellone in treating atopic dermatitis (AD) through in silico-, cell-, and animal-based experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!