Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202207474 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA.
Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.
View Article and Find Full Text PDFMolecules
January 2025
Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
Mixed-metal nickel-iron, NiFe materials draw attention as affordable earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Here, nickel and mixed-metal nickel-iron metal-organic framework (MOF) composites with the carbon materials ketjenblack (KB) or carbon nanotubes (CNT) were synthesized in situ in a one-pot solvothermal reaction. As a direct comparison to these in situ synthesized composites, the neat MOFs were postsynthetically mixed by grinding with KB or CNT, to generate physical mixture composites.
View Article and Find Full Text PDFNano Converg
January 2025
School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA.
The electrochemical oxidation of alcohol molecules has gained significance as a key anode reaction, offering an alternative to the oxygen evolution reaction (OER) for hydrogen (H) production and carbon dioxide (CO) reduction. The (photo)electrochemical oxidation of benzyl alcohol and its derivatives serves as an important model system, not only because benzyl alcohol oxidation is a critical industrial process, but also because it offers valuable insights into electrocatalytic biomass conversion. Tailoring this reaction through electrochemical and photoelectrochemical methods using heterogeneous noble and transition metal electrocatalysts presents a green approach and the potential for uncovering new reaction mechanisms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Max Planck-EPFL Laboratory for Molecular Nanoscience, Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland, 1005, Lausanne, SWITZERLAND.
Efficient catalytic water splitting demands advanced catalysts to improve the slow kinetics of the oxygen evolution reaction (OER). Earth-abundant transition metal oxides show promising OER activity in alkaline media. However, most experimental information available is either from post-mortem studies or in-situ space-averaged X-ray techniques in the micrometer range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!