Background: In this study, computationally efficient methods to approximate the reliabilities of genomic estimated breeding values (GEBV) in a single-step genomic prediction model including a residual polygenic (RPG) effect are described. In order to calculate the reliabilities of the genotyped animals, a single nucleotide polymorphism best linear unbiased prediction (SNPBLUP) or a genomic BLUP (GBLUP), was used, where two alternatives to account for the RPG effect were tested. In the direct approach, the genomic model included the RPG effect, while in the blended method, it did not but an index was used to weight the genomic and pedigree-based BLUP (PBLUP) reliabilities. In order to calculate the single-step GBLUP reliabilities for the breeding values for the non-genotyped animals, a simplified weighted-PBLUP model that included a general mean and additive genetic effects with weights accounting for the non-genomic and genomic information was used. We compared five schemes for the weights. Two datasets, i.e., a small (Data 1) one and a large (Data 2) one were used.

Results: For the genotyped animals in Data 1, correlations between approximate reliabilities using the blended method and exact reliabilities ranged from 0.993 to 0.996 across three lactations. The slopes observed by regressing the reliabilities of GEBV from the exact method on those from the blended method were 1.0 for all three lactations. For Data 2, the correlations and slopes ranged, respectively, from 0.980 to 0.986 and from 0.91 to 0.96, and for the non-genotyped animals in Data 1, they ranged, respectively, from 0.987 to 0.994 and from 0.987 to 1, which indicate that the approximations were in line with the exact results. The best approach achieved correlations of 0.992 to 0.994 across lactations.

Conclusions: Our results demonstrate that the approximated reliabilities calculated using our proposed approach are in good agreement with the exact reliabilities. The blended method for the genotyped animals is computationally more feasible than the direct method when RPG effects are included, particularly for large-scale datasets. The approach can serve as an effective strategy to estimate the reliabilities of GEBV in large-scale single-step genomic predictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814342PMC
http://dx.doi.org/10.1186/s12711-022-00774-yDOI Listing

Publication Analysis

Top Keywords

blended method
16
single-step genomic
12
genotyped animals
12
reliabilities
11
computationally efficient
8
large-scale single-step
8
genomic
8
genomic prediction
8
approximate reliabilities
8
breeding values
8

Similar Publications

Design and Process Considerations for Preparation of Modified Release Ivermectin and Praziquantel Tablets by Wet Granulation.

AAPS PharmSciTech

January 2025

University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N Pine Street, Baltimore, Maryland, 21201, USA.

Dosage forms containing Ivermectin (IVER) and Praziquantel (PRAZ) are important combination drug products in animal health. Understanding the relationship between products with differing in vitro release characteristics and bioequivalence could facilitate generics. The goal of this study was to create granulations for each active ingredient, with similar release mechanisms, but substantially different in vitro release rates, and then compressing these granulations into tablets with differing release rates.

View Article and Find Full Text PDF

Objective: This study evaluated the impact of adding authentic patient video training to a base e-module featuring simulated patient videos, aimed at improving the mental status examination (MSE) skills of fifth-year medical students during their psychiatric rotation.

Methods: A randomized controlled trial (RCT) was conducted with 290 students, assigned to either an experimental group, the full e-learning group (Full), or an active comparator group, the limited e-learning group (Limited). The Limited group received a base e-module on MSE, while the Full group received both the base e-module and an additional module with 23 authentic patient videos.

View Article and Find Full Text PDF

Personalized Nutrition (PN) represents an approach aimed at delivering tailored dietary recommendations, products or services to support both prevention and treatment of nutrition-related conditions and improve individual health using genetic, phenotypic, medical, nutritional, and other pertinent information. However, current approaches have yielded limited scientific success in improving diets or in mitigating diet-related conditions. In addition, PN currently caters to a specific subgroup of the population rather than having a widespread impact on diet and health at a population level.

View Article and Find Full Text PDF

"Popping the Ion-Basket": Enhancing Thermoelectric Performance of Conjugated Polymers by Blending with Latently Dissociable Perovskite Quantum Dots.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.

View Article and Find Full Text PDF

Controlled-release nitrogen combined with ordinary nitrogen fertilizer improved nitrogen uptake and productivity of winter wheat.

Front Plant Sci

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China.

Background: Blending controlled-release nitrogen fertilizer (CRNF) with ordinary nitrogen fertilizer (ONF) is a strategic approach to improve winter wheat nutrient management. This blend provides nitrogen (N) to winter wheat in a balanced and consistent manner, ensuring long-term growth, reducing nutrient loss due to leaching or volatilization, and increasing N use efficiency (NUE).

Aims: CRNF aims to enhance N application suitability, optimizes soil nutrient dynamics, and its widespread use can boost crop NUE and yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!