A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic and phenotype recovery of Ananas comosus var. MD2 in response to ionizing radiation. | LitMetric

Due to their sessile nature, plants are exposed to various environmental stressors such as exposure to high levels of harmful ultraviolet (UV), ionizing, and non-ionizing radiations. This exposure may result in various damages, ranging from DNA and chromosomal aberrations to phenotypic abnormalities. As an adaptation, plants have evolved efficient DNA repair mechanisms to detect and repair any damage caused by exposure to these harmful stressors to ensure their survival. In this study, the effects of gamma radiation (as a source of ionizing radiation) on clonal Ananas comosus var. MD2 was evaluated. The morphology and physiology of the clonal plantlets before and after exposure to gamma radiation were monitored at specific time intervals. The degree of genetic variation between the samples pre- and post-irradiation was also analyzed by using inter-simple sequence repeat (ISSR) markers. The resulting data revealed that the heights of the irradiated plantlets were significantly reduced (compared to control), but improved with the recovery period. Irradiated samples also exhibited relatively good photosynthetic efficiency that further improved as the plantlets recover. These observations were supported by the ISSR analysis, where the genetic dissimilarities between the irradiated samples and control were reduced by 0.1017, after 4 weeks of recovery. Overall, our findings suggested that the phenotype recovery of the clonal A. comosus var. MD2 plantlets was contributed by their ability to detect and repair the DNA lesions (as exemplified by the reduction in genetic dissimilarity after 4 weeks) and hence allow the plantlets to undergo phenotype reversion to normal plant stature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814699PMC
http://dx.doi.org/10.1038/s41598-022-26745-3DOI Listing

Publication Analysis

Top Keywords

comosus var
12
var md2
12
phenotype recovery
8
ananas comosus
8
ionizing radiation
8
detect repair
8
gamma radiation
8
irradiated samples
8
plantlets
5
genetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!