AI Article Synopsis

  • - The study examined how short-term severe sleep restriction (2 hours per night) affects gut microbiota and intestinal permeability in healthy young adults, comparing it to adequate sleep (7-9 hours) using a controlled diet and activity.
  • - Results showed a 21% decrease in gut microbiota richness during sleep restriction, though other diversity measures and the abundance of most bacterial groups remained unchanged.
  • - Additionally, no significant differences in intestinal permeability were found, suggesting that while sleep restriction affects gut microbiota richness, its overall community composition and intestinal barrier function remain relatively stable in healthy young men.

Article Abstract

Sleep restriction alters gut microbiota composition and intestinal barrier function in rodents, but whether similar effects occur in humans is unclear. This study aimed to determine the effects of severe, short-term sleep restriction on gut microbiota composition and intestinal permeability in healthy adults. Fecal microbiota composition, measured by 16S rRNA sequencing, and intestinal permeability were measured in 19 healthy men (mean ± SD; BMI 24.4 ± 2.3 kg/m, 20 ± 2 years) undergoing three consecutive nights of adequate sleep (AS; 7-9 h sleep/night) and restricted sleep (SR; 2 h sleep/night) in random order with controlled diet and physical activity. α-diversity measured by amplicon sequencing variant (ASV) richness was 21% lower during SR compared to AS (P = 0.03), but α-diversity measured by Shannon and Simpson indexes did not differ between conditions. Relative abundance of a single ASV within the family Ruminococcaceae was the only differentially abundant taxon (q = 0.20). No between-condition differences in intestinal permeability or β-diversity were observed. Findings indicated that severe, short-term sleep restriction reduced richness of the gut microbiota but otherwise minimally impacted community composition and did not affect intestinal permeability in healthy young men.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816096PMC
http://dx.doi.org/10.1038/s41598-023-27463-0DOI Listing

Publication Analysis

Top Keywords

intestinal permeability
20
sleep restriction
16
gut microbiota
16
severe short-term
12
short-term sleep
12
permeability healthy
12
microbiota composition
12
healthy young
8
young men
8
composition intestinal
8

Similar Publications

Development of a Caco-2-based intestinal mucosal model to study intestinal barrier properties and bacteria-mucus interactions.

Gut Microbes

December 2025

Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for assays, particularly the generation of a mucus layer, has proven to be challenging.

View Article and Find Full Text PDF

Background: Hyperuricemia (HUA), a common metabolic disorder associated with gout, renal dysfunction, and systemic inflammation, necessitates safer and more comprehensive therapeutic approaches. Traditional Tibetan medicine has a rich history of treating HUA. This study aimed to identify novel anti-hyperuricemic herb derived from traditional Tibetan medicine.

View Article and Find Full Text PDF

Roles of traditional Chinese medicine extracts in hyperuricemia and gout treatment: Mechanisms and clinical applications.

World J Gastroenterol

December 2024

Department of Cell Biology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, Shandong Province, China.

In this manuscript, we comment on the article by Liu published in the recent issue of the journal. Hyperuricemia (HUA) has become the second most common metabolic disease after type 2 diabetes mellitus and is the most important risk factor for gout. This discussion focuses on the targets and clinical application value of traditional Chinese medicine (TCM) extracts in the treatment of HUA and gout, emphasizing the role of gut microbiota.

View Article and Find Full Text PDF

Clostridium butyricum, a future star in sepsis treatment.

Front Cell Infect Microbiol

December 2024

Medical Laboratory, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China.

Sepsis is a systemic inflammatory response syndrome of multiorgan failure caused by dysregulation of the host response to infection and is a major cause of death in critically ill patients. In recent years, with the continuous development of sequencing technology, the intestinal microecology of this disease has been increasingly studied. The gut microbiota plays a host-protective role mainly through the maintenance of normal immune function and the intestinal barrier.

View Article and Find Full Text PDF

Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease.

Eur J Med Res

December 2024

Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.

The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: