Sounds enhance the detection of visual stimuli while concurrently biasing an observer's decisions. To investigate the neural mechanisms that underlie such multisensory interactions, we decoded time-resolved Signal Detection Theory sensitivity and criterion parameters from magneto-encephalographic recordings of participants that performed a visual detection task. We found that sounds improved visual detection sensitivity by enhancing the accumulation and maintenance of perceptual evidence over time. Meanwhile, criterion decoding analyses revealed that sounds induced brain activity patterns that resembled the patterns evoked by an actual visual stimulus. These two complementary mechanisms of audiovisual interplay differed in terms of their automaticity: Whereas the sound-induced enhancement in visual sensitivity depended on participants being actively engaged in a detection task, we found that sounds activated the visual cortex irrespective of task demands, potentially inducing visual illusory percepts. These results challenge the classical assumption that sound-induced increases in false alarms exclusively correspond to decision-level biases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816120PMC
http://dx.doi.org/10.1038/s42003-022-04335-3DOI Listing

Publication Analysis

Top Keywords

visual detection
12
neural mechanisms
8
visual
8
improved visual
8
detection task
8
task sounds
8
detection
6
magnetoencephalography recordings
4
recordings reveal
4
reveal neural
4

Similar Publications

Human performance in psychophysical detection and discrimination tasks is limited by inner noise. It is unclear to what extent this inner noise arises from early noise (e.g.

View Article and Find Full Text PDF

An easy-to-synthesize aggregation-induced emission (AIE) active Schiff base HNSA was obtained by condensing equimolar amount of 3-hydroxy-2-naphthohydrazide and salicylaldehyde. In pure DMSO, HNSA is non-fluorescent, but increasing the HEPES (HO, 10 mM, pH 7.4) fraction (f) ≥ 90% showed an intense green fluorescence with maximum fluorescence intensity at 515 nm.

View Article and Find Full Text PDF

Dye-sensitized upconversion nanoprobes with ultra-high signal-to-background ratio for visual and sensitive detection of nerve agent mimics.

Mikrochim Acta

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.

An exciting upconversion nanoprobe conditioning strategy is proposed to improve the signal-to-background ratio (SBR) through a dye-sensitized strategy, in which the dye functions both as a recognition unit of the detection target and as a sensitizer to amplify the visible luminescence of the lanthanide-doped upconversion nanoparticles (UCNPs), instead of a quencher. The application of this dye-sensitized upconversion nanoprobe to the visual detection of nerve agent mimics diethoxy phosphatidylcholine (DCP) showed excellent detection performance, with up to 110-fold enhancement of the luminescence response of the probe in DCP solution and a detection limit as low as 2 nM. Finally, we performed visual detection of DCP solution and vapor by using test strips containing the probe.

View Article and Find Full Text PDF

Enhancing safety in CT-guided lung biopsies: correlation of MinIP imaging with pneumothorax risk prediction.

Insights Imaging

January 2025

Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.

Objectives: This study aimed to evaluate whether minimum-intensity projection (MinIP) images could predict complications in CT-guided lung biopsies.

Methods: We retrospectively analyzed 72 procedures from January 2019 to December 2023, categorizing patients by pneumothorax and the severity of hemorrhage (grade 2 or higher). Radiodensity measurements were performed using lung window (LW) and MinIP (10-mm slab) images.

View Article and Find Full Text PDF

Virtual Monitoring Technician Performance in High-Fidelity Simulations of Remote Patient Monitoring: An Exploratory Study.

Simul Healthc

January 2025

From the Department of Human Factors (H.S., Y.P., E.T., L.D.W.), Center for the Simulation, Research, and Patient Safety, Carilion Clinic, Roanoke, VA; and Health Systems and Implementation Science (S.H.P.), Virginia Tech Carilion School of Medicine, Roanoke, VA.

Introduction: Virtual Monitor Technicians (VMTs) are crucial in remotely monitoring inpatient telemetry. However, little is known about VMT workload and intratask performance changes, and their potential impact on patient safety. This exploratory study used a high-fidelity simulation aimed to evaluate VMTs' workload and performance changes over time in telemetry monitoring and identify future research directions for performance improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!