Photonic machine learning with on-chip diffractive optics.

Nat Commun

Beijing National Research Center for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China.

Published: January 2023

Machine learning technologies have been extensively applied in high-performance information-processing fields. However, the computation rate of existing hardware is severely circumscribed by conventional Von Neumann architecture. Photonic approaches have demonstrated extraordinary potential for executing deep learning processes that involve complex calculations. In this work, an on-chip diffractive optical neural network (DONN) based on a silicon-on-insulator platform is proposed to perform machine learning tasks with high integration and low power consumption characteristics. To validate the proposed DONN, we fabricated 1-hidden-layer and 3-hidden-layer on-chip DONNs with footprints of 0.15 mm and 0.3 mm and experimentally verified their performance on the classification task of the Iris plants dataset, yielding accuracies of 86.7% and 90%, respectively. Furthermore, a 3-hidden-layer on-chip DONN is fabricated to classify the Modified National Institute of Standards and Technology handwritten digit images. The proposed passive on-chip DONN provides a potential solution for accelerating future artificial intelligence hardware with enhanced performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814266PMC
http://dx.doi.org/10.1038/s41467-022-35772-7DOI Listing

Publication Analysis

Top Keywords

machine learning
12
on-chip diffractive
8
donn fabricated
8
3-hidden-layer on-chip
8
on-chip donn
8
on-chip
5
photonic machine
4
learning
4
learning on-chip
4
diffractive optics
4

Similar Publications

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.

View Article and Find Full Text PDF

Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.

View Article and Find Full Text PDF

Background: Patient engagement is a critical but challenging public health priority in behavioral health care. During telehealth sessions, health care providers need to rely predominantly on verbal strategies rather than typical nonverbal cues to effectively engage patients. Hence, the typical patient engagement behaviors are now different, and health care provider training on telehealth patient engagement is unavailable or quite limited.

View Article and Find Full Text PDF

Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).

View Article and Find Full Text PDF

Enhancing beer authentication, quality, and control assessment using non-invasive spectroscopy through bottle and machine learning modeling.

J Food Sci

January 2025

Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.

Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!